m

e AL 8
Wiy

CDRL.: BO09

28 February 1994

UNISYS

Technical Concept Document
Central Archive for Reusable Defense Software

(CARDS) ~ @ T l C

Informal Technical Report .; ¢ "E:LECTE

ﬁ,\.

>
R

. f
f/\ﬂ‘%@‘n S

r-ll A
2 ~ Central Archive for Reusable Defense Software

&
o

STARS-VC-B009/001/00
28 February 1994

f\‘%@(94-29865
ARTMA

CDRL: BO09
28 February 1994
INFORMAL TECHNICAL REPORT
For The
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Technical Concept Document
Central Archive for Reusable Defense Software
{(CARDS)

STARS-VC-B009/001/00
28 February 1994

Data Type: INFORMAL TECHNICAL DATA
Conrract NO. F19628-93-C-0130
Line Item 0002AB

Prepared for:

Electronic Svstems Center
Air Force Material Command, USAF
Hanscom AFB, MA 01731-2816

Prepared by:

Unisys Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

Distribution Statement " A"
per DoD Directive 5230.24
Approved for public release, distribution is unlimited

CDRL: B009

28 February 1994
INFORMAL TECHNICAL REPORT
For The
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Technical Concept Document
Central Archive for Reusable Defense Software
(CARDS)

STARS-VC-B009/001/00
28 February 1994

Data Type: INFORMAL TECHNICAL DATA

Contract NO. F19628-93-C-0130
Line Item Q002AB

Prepared for:

Electronic Systems Center
Air Force Material Command, USAF
Hanscom AFB, MA 01731-2816

Prepared by:
Unisys Corporation

12010 Sunrise Valley Drive
Reston, VA 22091

CDRL: BO09
28 February 1994

Data Reference: STARS-VC-B009/001/00
INFORMAL TECHNICAL REPORT
Technical Concept Document

Central Archive for Reusable Defense Software
(CARDS)

Distribution Statement "A"
per DoD Directive 5230.24
Approved for public release, distribution is unlimited

Copyright 1994, Unisys Corporation, Reston Virginia
Copyright is assigned to the U.S. Government, upon delivery thereto in accordance with the
DFARS Special Works Clause
Developed by:

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Techni-
cal Information Program Classification Schema (DoD Directive 5230.24) unless otherwise
indicated by the U.S. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) un-
der contract F19628-93-C-0130 the STARS program is supported by the military services with
the U.S. Air Force as the executive contracting agent. The information identified herein is sub-
ject to change. For further information, contact the authors at the following mailer address:
delivery@stars.reston paramax.com

Permission to use, copy, modify, and comment on this document for purposes stated under
Distribution "A" and without fee is hereby granted, providing that this notice appears in each
whole or partial copy. This document retains Contractor indemnification to the Government
regarding copyrights pursuant to the above referenced STARS contract. The Governn.2nt dis-
claims all responsibility against liability, including costs and expenses for violation of property
rights, or copyrights arising out of the creation or use of this document.

The contents of this document constitutes technical information developed for internal Govern-
ment use. The Government does not guarantee the accuracy of the contents and does not
sponsor the release to third parties whether engaged in performance of a Government contract
or subcontract or otherwise. The Government further disallows any liability for damages in-
curred as the result of the dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disciaim all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and in
no event shall the Government (prime contractor or its subcontractor) be liable for any special,
indirect, or consequential damages or any damages whatsoever resulting from the loss of use,

CDRL; BOO9
28 February 1994

data, or profits, whether in action of the contract, negligence, or other totious action, arising in
connection with the use or perfomance of this document.

iv

Data Reference: STARS-VC-B009/001/00
INFORMAL TECHNICAL REPORT
Technical Concept Document

Central Archive for Reusable Defense Software
(CARDS)

CDRL: BO09
28 February 1994

Principal Author(s):

James Estep Date
Scott Hissam Date
Approvals:

System Architect: Kurt Wallnau Date
Program Manager: Lorraine Martin Date

(Signatures on File)

CDRL: BO0S
28 February 1994

Data Reference: STARS-VC-B009/001/00
INFORMAL TECHNICAL REPORT
Technical Concept Document

Central Archive for Reusable Defense Software
(CARDS)

ABSTRACT

The Central Archive for Reusable Defense Software (CARDS) program is a concerted DoD
initiative to transition advances in the techniques and technology of library-aided, architecture-
centric, domain-specific software reuse into mainstream DoD software procurement. This
technology transition effort involves the development of a domain-specific reuse library for
researching tech nologies and methodologies for creating reuse libraries. This document describes
the technical concepts employed towards the development of the CARDS Command Center
Library. It is an update to a previous version published on February 26, 1993 [39].

CARDS views a reuse library as reusable software components, a library model and supporting
library applications. This view, and it’s consequences on library development are presented
in this document. A discussion of model-based reuse library infrastructure presents a model-
based view of library development, with an emphasis on distinctions between domain and library
modeling.

The component qualification process is presented as an integral part of the li brary development
process. Modeling of the command center library has evolved to support development and
integration of various reuse library applications. The CARDS system composition and component
qualification tools are discussed.

This document also presents technical aspects of the operational library, such as distribution
options (e.g., AFS), reuse library security issues (an overview of the CARDS security analysis
is presentei), and advances made in interoperation between reuse libraries.

vi

REPORT DOCUMENTATON PAGE I N e

Public reporting burden for this collection of information is cetimated to avorage 1 bour per responass, inciuding the tme for reviering instructions, searching existing dats sources, guthering
and mujntaining the data noeded, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of infor.
mation, including suggestions for reducing thiy burden, to Washington Headquarters Services, Directorste for information Operstions and Reports, 1215 Jeffersoa Duvis Highway, Svite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-018%), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
28 February 1994 Final

—
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Technical Concept Document
CARDE

F19628-93-C-0130 1

6. AUTHOR(S)

James L. Estep and Scott A. Hissam

S ——————
8. PERFORMING ORGANI-
ZATION REPORT NUMBER r

0 s

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation
12010 Sunrise Vallcy Drive
Reston, VA 22091

STARS-VC-B009/001/00

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONI.-
TORING AGENCY

Department of the Air Force REPORT NUMBER
ESC/ENS

Hanscom AFB, MA 01731-2816

N S R

11. SUPPLEMENTARY NOTES

M S
12a. DISTRIBUTION AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

DISTRIBUTION “A”

13. ABSTRACT (Maximum 200 words)

The Central Archive for Reusable Defense Software (CARDS) program Is a concerted DoD inltiative to transition advances in the techniques and technology of
library-aided, architecture-centric, domaln-specific software reuse into mainstream DoD software procurement. This technology tranaition effort invoives the
development of a damain-specific reuse library for researching technologies and methodologies for creating reuse {fbraries. This document describes the technical
concepts employed towards the development of the CARDS Command Center Library. It is an update to a previous version published on February 26, 1993
{391.CARDS views a reuse library as reusable software components, & library model and supporting library applications. This view, and it’s consequences on library
development are presented in this document. A discussion of model-bascd reuse library Infrastructure presents 2 model-based view of library development, with an
emphasis on distinctions between domain and library modeling. The component qualification process is presented as an Integral part of the library development
process. Modeling of the command enter library bas evoived to support development and integration of various reuse library applications. The CARDS system
composition and component qualification tools are discussed. This document ale presenta technical aspects of the operational library, such as distribution options
(e-g. AFS), reuse library security issues (an overview of the CARDS security analysis i presented), and advances made in Interoperation between reuse libraries.

14. SUBJECT TERMS 15 NUMBER OF PAGES
62

CARDS, reuse, library, domain-specific, model-based, modeling, security, interoperation, library development, qualification,
systern compaosition 16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION OF § 19. SECURITY CLASSIFICA- 20. LIMITATION OF
REPORT THIS PAGE TION OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

CDRL: BO09
28 February 1994

Table of Contents

1 Introduction

1.1 Purpose

1.2 Background

1.3 Scope

1.4 Mission of CARDS

1

1

-y

1.2.1 Domain-Specific Reuse 1
1.2.2 Reuse Library Approaches 1
3

4

2 Model-Based Reuse Library Infrastructure 6
2.1 Library Design and Construction 7
2.1.1 Library Integration of Supply and Demand Processes 8
2.1.2 Domain vs. Library Modeling 11
2.1.3 Domain Modeling 13
2.1.3.1 Domain Architectures 13
2.1.3.2 Domain Architectures: Genericity versus Abstraction 14
2.1.4 Capturing Commonality and Variation 14
2.1.5 Architecture Representations 15
2.1.6 Library Modeling 17
2.2 CARDS Library Development 18
2.2.1 Library Modedling Approach .18
2.2.2 Library Model Development 20
2.2.3 Component Qualification Process 20
2.2.3.1 Qualification’s Role in Model Development 21
2.2.3.2 The Basis for Component Qualification 22
2.2.3.3 Domain and Common Criteria 23
2.2.3.4 Qualification Methodologies 23
2.2.3.5 Component Evaluation 24

3 Domain-Specific Application of Model-Based Reuse Libraries 25
3.1 PRISM Program and Approach 25
3.2 The C2 Model and Its Applications. 27
3.2.1 System Composition Application 28
3.2.1.1 Target System Constraints .28

vii

3.2.1.2 System Composition Model (rule-base) and Heuristics
3.2.1.3 System Demonstration

CDRL: BO09
28 February 1994

29

29

3.2.1.4 Composed System
3.2.1.5 Current Status

3.2.2 Component Qualification Application
3.2.2.1 An Intelligent Assistant

3.2.2.2 Overview

2288

3.2.2.3 Current Status
3.2.2.4 Future Plans

) |

31

4 CARDS Reuse Library Support Infrastructure

4.1 The CARDS Library Infrastructure

4.2 CARDS Library Mechanism

4.3 Distribution

4.3.1 Complete Distribution Via AFS

4.3.2 Partial Distribution Via AFS

4.3.3 Distribution in the Absence of AFS

4.3.4 Distribution in the Absence of Internet

4.4 Telecommunications

4.4.1 Wide-Area Networks

4.4.2 Direct Connection

§ The CARDS Library Security

5.1 Overview

43

5.2 Security Plan

5.3 Scope of CARDS Library Security

5.4 Security Policy

5.5 Risk Analysis

3 N

5.5.1 Threat Identification

45

5.5.2 Threat Evaluation

5.5.2.1 The Process - An Overview

.........

45
46

5.5.2.2 An Dlustration

5.6 Countermeasures

6 Library Interoperability

6.1 Overview

47
47

48

48

6.2 A Reference Model for Interoperability
6.3 Features and Scenarios.

48
50

viii

CDRL.: B09

28 February 1994

6.3.1 Features
6.3.2 Scenarios

{1
S0

6.3.2.1 Scenario I: Librarian assisted retrieval of asset
6.3.2.2 Scrnario Ia: Automated retrieval of description or abstract

ooooooooooooooooo

.51

...... 52

6.3.2.3 Scenario IIb: Automated retrieval of asset..
6.4 CARDS/ASSET/DSRS Interoperability.

53
54

Appendices

Appendix A Glossary

Appendix B Acronyms.

Appendix C References

STARS-VC-B009/001/00 28 February 1994

1 Introduction
1.1 Purpose

The purpose of the Technical Concept Document is to describe the technical concepts
employed towards development cf the Central Archive for Reusable Defense Software (CARDS)
Command Center Library, including library development, the library software and operational
infrastructures, security, and interoperability. This document will baseline the technical
foundation for the Command Center Library and for other domain-specific libraries to be
implemented by the CARDS Program.

This document supersedes the Technical Concept Document dated 26 February 1993, and refiects
the most current concepts being employed by CARDS.

1.2 Background
1.2.1 Domain-Specific Reuse

There i1s a firm consensus that to increase productivity, quality, and reliability, the software
development community must reuse products from prior projects, as well as the associated human
problem-solving expertise. Reuse must be applied throughout application life-cycle activities,
requiring a broad spectrum of reusable assets (e.g., requirements, architectures, software, and
documentation).

To achieve broad-spectrum reuse, CARDS advocates domain-specific reuse which focuses reuse
efforts on narrow, well-defined areas (i.e., domains). These domains are carefully scoped and
modeled. A library supporting domain-specific reuse for command centers has been created
under the CARDS Program. As the library matures, it will build towards having a full set of
life-cycle artifacts, including both domain engineering and system/software engineering assets.

1.2.2 Reuse Library Approaches

Two approaches to implementing a reuse library are generally recognized: component-based and
model-based [42].

Component-based libraries are organized around collections of reusable components. These
components are of various types, such as software, documentation, and architectures. While
component-based libraries can support reuse of a broad-specttum of component types, the
underlying operational concept is that of search and retrieval of individual components. When
components are inserted into these libraries, they are typically classified in broad, generalized
categories, and information describing their specific role in a particular problem-domain
architecture is not formally encoded. As a result, the domain knowledge is no longer attached
to the component and therefore lost to the reuser. Typically, components selected for reuse

Page 1

T ——

STARS-VC-B009/001 /00 28 February 1994

are taken from the original context in which they were created, thus information relating 1o the
environment that surrounded the component is lost (see Figure 1-1).

concept of
operations

ication
:gg.tcxt —

physical worlid

Figure 1-1 Component Context

Assumptions and assertions made during the development of that components relating to the
operational environment, abstractions use in the context of the application, and underlying
services that the component may have relied upon are no longer present for the reuser. Certainly
the reusability of a component is enhanced when as many of these interdependencies are
eliminated during the original development of the component and any remaining dependencies
are clearly and completely docum..ted. However, as the granularity of the component becomes
more coarse, it becomes more difficult to abstract and divorce the component from its operational
context.

Advantages of a component-base approach include strong search mechanisms based on well-
known classification techniques and the ability to reuse across a brosd range of domains
simultaneously. Disadvantages include the loss of context information (i.e., domain knowledge)
and limitations on reuse-oriented engineering processes that can be supported by the library.

Model-based libraries use domain models as a foundation for library organization and a
framework for supporting applications which exploit these models to automate various library
services. The librarv model encompasses information such as domain knowledge, generic
architecture spccifications, requirements, implementation restrictions, as well as software artifacts
(including commercial and government off-the-shelf products). The inclusion of this additional
information within the library model supports a "components in - subsystems out” paradigm that
facilitates the concept of mega-programming desired by the Department of Defense [40].

Advantages of a model-based approach include the ability to provide a domain-context for
components and support for reuse-oriented engineering activities (e.g., system composition,
component qualification). Disadvantages include weak associative search and retrieval and lack
of cross-domain component search and retrieval.

Page 2

STARS-VC-B009/001/00 28 February 1994

The focus these approaches to reuse libraries place on objects is fundamentally different.
In a component-based approach, the emphasis on components in the library focus on the
"individuality" of the component and issues related to the "efficiency” and "productivity" of
the component. This approach serves as a solid foundation in developing a rich and powerful
classification scheme for equating “"what the component is" to "where to find it" allowing the
development of sophisticated mechanisms to search and retrieve components matching the search
criteria. In a model-based approach (see Figure 1-1)

-1 compone -

Qbject Focus: . Context Focus

¥ what kind is it? . ¥used by?

¥ what does it do? ¢ ¥ what other components|

¥ how good is it? does it use?

¥ powerful naming scheme! - Semantic classification:

¥ equate ...what it is— Wlth« ¥ equate ...how it is used—
..where to find it— . with .. .where to find it—

Figure 1-2 Focus on Library Components

the focus is more on how the component fits in the application domain for which it is intended
to be reused. In this approach the emphasis is on "who/what uses it" and "whom/what does it

se" (where who or what refers to other components or systems) which is an intent to preserve
some or most of the context information lost in component-based approaches. Additionally, the
model-based approach emphasizes on the "when"and "why" a component is used in the applica-
tion domain where the intent is to tie the operational context or requirements for a components
use. This approach serves as a foundation for semantic search classification schemes which re-
late how a component is used to "where to find it".

While the CARDS Command Center Library adheres tc a model-based paradigm in support
of domain-specific rc 'se, CARDS feels that the complementary nature (as illustrated by the
advantages and disadvantages) of the approaches suggest that they are not diametrical, but rather
complementary [42].

1.3 Scope

This document addresses the technical tasks specific to the continued development and
maintenance of the Command Center Library required during Phase Il of the CARDS Program.

Page 3

STARS-VC-B0095/001/00 28 February 1994

- .

References made to future efforts beyond the scope of Phase HI are included for informational
purposes only.

1.4 Mission of CARDS

CARDS is a concerted DoD effort to transition advances in the techniques and technologies
of domain-specific software reuse into mainstream DoD software procurements [10]. There are
four key elements to the CARDS approach:

1. Produce, document, and propagate techniques to enable domain-specific reuse
throughout the DoD.

2. Develop and operate a domain-specific library system and necessary tools.

3. Develop a Franchise Plan which provides a "knowledge blueprint” for institutional-
izing domain-specific reuse throughout the DoD.

4. Implement the Franchise Plan with selected users and/or provide a tailored set of
services to support reuse.

The knowledge blueprint has been conveyed by a Franchise Plan consisting of library
documentation, reuse process handbooks, cost, schedules, education and training documentation,
and procedures for implementing domain-specific reuse. The Franchise Plan supports the
transition of the blueprint to DoD organizations and contractors as an overall plan for developing
and supporting other domain-specific infrastructures. The handbooks are targeted to audiences
crucial to the adoption and institutionalization of domain-specific reuse techniques (including
direction-level and acquisition personnel, engineers, and tool and component vendors). They
address the issues and responsibilities of the intended audience as it pertains to the implementation
of domain-specific reuse.

A training plan and system/software engineers’ course have been developed to support the
integration of domain-specific reuse into the software development life-cycle and educate and
reeducate software professionals. These “tools” will aid to eliminate the cultural barriers typically
associated with reuse and introduction of new ideas and technologies in the workplace.

The development and population of a domain-specific library for the command center domain
will continue in support of the CARDS mission for evaluating and validating the knowledge
blueprint. The Command Center Library is maintained at a central site (located in Fairmont,
WV) and consists, in part, of: facilities, personnel, domain and library modeling, software
components, qualification procedures, maintenance procedures, retrieval procedures, browsing
capabilities, and various user services that support domain-specific reuse. User interaction with
the library will occur from multiple remote sites.

Ultimately, CARDS will provide mechanisms and methods supporting domain-specific reuse
integration, component acquisition, rapid prototyping, clarification of requirements, system

Page 4

STARS-VC-B009/001/00 28 February 1994

composition, component qualification, and component generation. Much of this is either currently
implemented or under development.

CARDS is working closely with PRISM (Portable Reusable Integrated Software Modules) to
develop the Command Center Library. PRISM developed generic architectures and prototype
implementations of command centers which CARDS uses as a basis for 8 domain-specific library.

CARDS is also working with Software Technology for Adaptable, Reliable Software (STARS)
and the Defense Information Systems Agency (DISA) on library interoperation and security
technology. CARDS and ASSET (Asset Source for Software Engineering Technology) have
developed an interoperability plan and operational capability between the two repositories. A
trilateral interoperation plan between CARDS, ASSET, and DSRS (Defense Software Repository
System) has also been developed. Initial operational capability began during October 1993,

Page §

STARS-VC-B009/001/00 28 February 1994

2 Model-Based Reuse Library Infrastructure

The CARDS approach to constructing and using reuse libraries differs from other approaches in a
significant way; rather than viewing a library as merely a "repository” - a storage area for software
components - CARDS views a library as a library model and a set of library applications. Thus,
CARDS distinguishes the concept of a reuse repository (the underlying storage and retrieval
mechanism) from the reuse library (the storage and related applications).

On the surface this is a subtle distinction, since repositories such as Asset Source for Software
Engineering Technology (ASSET) and Defense Software Repository System (DSRS) require
some underlying model (commonly referred to as "the data model” and "the classification
scheme”). At a deeper level, however, this distinction is important in understanding the CARDS
approach to domain-specific reuse. Some immediate implications of this distinction are:

» The definition of component in conventional repositories tends to follow easily de-
scribed, well-partitioned functional lines, e.g., documents, subroutines, modules, and
applications. In CARDS, components are not always as discrete, and include con-
cepts such as requirements, generic architectures, other conceptual models, and their
interrelationships.

» Conventional repositories place a heavy emphasis on component search and
retrieval, i.e., they are usually characterized by a single application supporting inter-
active search. The CARDS approach envisions a collection of library applications
tailored to the domain of interest and a selected clientele. Sample applications in-
clude a graphical browser, system composer, and component qualifier.

To achieve this technical vision of a reuse library, CARDS relies upon the use of modeling
formalisms that are significantly richer than lower-level data modeling formalisms such as
entity-relationship-attribute (ERA) models and relational models which characterize conventional
repository and database approaches. Instead, CARDS draws upon technology derived from the
field of knowledge representation and inferencing technology.

The use of knowledge representation techniques is crucial as a means of describing, managing,
and using the complex sets of relationships (also referred to as constraints in this document) that
characterize an application domain and its software architectures and components (a detailed
description of command center library constraints is included later in this chapter). Use of
inferencing technologies are utilized to exploit the information captured in the knowledge base
to construct library applications which provide reuse services to library users.

It is not enough, however, to have the tools available to create library models and library
applications — there are critical design decisions which must be made in the design and
construction of domain-specific libraries that depend upon:

» the nature of the underlying application domain.

Page 6

STARS-VC-B009/001/00 28 February 1994

» the manner in which the underlying application domain is analyzed and modeled
(i.e., domain analysis techniques).

« the saticipated end-user requirements on the library, i.e., usage scenarios.

« the capabilities of the modeling system used to create the library model.

In addition to the above, there are technical issues related to the support and management of an
operational library that transcend the engineering mechanics of library design and construction.
These and the technical concepts of library operations must be considered as part of the same
engineering process for creating and fielding an operational domain-specific reuse library.

The following sections describe the interplay of these (and other) dimensions of library design
and construction processes. Section 2.1 describes how the underlying application domain, domain
analysis, and library end-user scenarios affect the design of a domain-specific reuse library and
how the CARDS library infrastructure can be applied to design and implement domain-specific
reuse libraries. Section 2.2 presents an overview of a component qualification process driven
by the CARDS library development process. Chapter 3 discusses how the issues described
in Section 2.1 apply to the construction of model-based reuse libraries in specific application
domains such as Command Center. The technology issues of operational libraries, with emphasis
on the Command Center Library, are presented in Chapter 4.

2.1 Library Design and Construction

Reuse in narrow application domains and the construction of domain-specific libraries is not
new, e.g., statistical and mathematical libraries. However, the attempt to make the practic. of
domain-specific reuse more systematic and repeatable across application domains is a recent
phenomena and has received heightened attention in recent years.

One result of recent efforts is the differentiation of two distinct engineering life-cycles: domain
engineering and system engineering [4]. Domain engineering refers to the techniques (i.e.,
methodologies) used to analyze and model an application domain and construct reusable
components based upon these analyses and models. System engineering refers to the more
familiar world of software and system development processes. Generally the difference involves
multiple products (or systems) versus single products (or systems), domain engineering versus
systems engineering, respectively.

This differentiation conveys a number of important principles:
» Although the representation techniques of domain engineering are frequently used in

system engineering (e.g., structured analysis and design technique (SADT) dia-
grams), their intent and meaning are different.

* To be successful, domain engineering activities must be considered independent of
any single application.

Page 7

STARS-VC-B009/001/00 28 February 1994

* Domain engineering implies an investment approach to the software life-cycle,
where the costs of instantiating a domain-engineering process will be amortized
over several system-engineering instantiations.

» The above-noted economic factors can be viewed in this way: domain engineering
can be considered a "supply-side” process, while system engineering is a "demand-
side” process. To be successful, a domain-specific reuse strategy must balance the
needs of the demand side with products provided by the supply side.

Elaborating on this last point, one element of a risk reduction strategy for amortizing the costs of
domain engineering includes ensuring the availability and use of domain engineering by-products
for system development processes. CARDS views this "availability and use" requirement in terms
of integrating the domain and system engineering life-cycle processes, and using the domain-
specific library as the underlying technology which supports this integration.

2.1.1 Library Integration of Supply and Demand Processes

Integration should be thought of in terms of relationships between two or more integrated entities
[43]. In the context of this document, these two entities are life-cycle processes. Figure 2-1
characterizes the domain and system engineering processes and draws parallels between these
processes [4]. While this characterization has obvious limitations (not the least of which is
the lack of industry consensus on the precise meaning of the terms used to describe domain
engineering in Figure 2-1), it does illustrate a number of parallels which are important in
understanding the integration of these processes:

* Domain requirements result from a requirements analysis for an entire family (i.e.,
domain) of applications; conversely, application requirements are targeted to a spe-
cific application.

* One result of domain analysis may be the specification of a domain architecture
which is used to convey high-level implementation paradigms and constraints char-
acterizing commonality and variances of domain applications; conversely,

application architectures are focused on satisfying a particular set of application re-
quirements.

¢ A domain analysis results in a collection of architectures (i.e., Command Center Do-
main) which are consistent with the paradigms and constraints determined from the
domain characteristics and requirements analysis. The realization of this collection
of architectures represents a domain implementation; conversely, application imple-
mentations consist of the development of an application based upon defined
application architectures

Page 8

STARS-VC-B009/001/00 28 February 1994
Domain ication
Requirements - R::‘:ir .
Domam Model l
Domam Application
Architecture Aschitecture

35

Domain Application
implementation Implementation
Domain Engineering System Engineering

Figure 2-1 Integration of Domain and System Engineering Processes

Given these parallels, there are many ways of making use of the products of domain engineering
during system engineering, i.e., integrating these activities, Three possibilities are illustrated in
Figures 2-2a through 2-2c.

Figure 2-2a illustrates two ways the domain implementation-level components can be used dur-
ing the system engineering process:

* During "bottom-up" design of an application architecture, the system designer can
integrate and understand the domain implementations.

* As part of the application implementation, the software engineer can locate and use
the domain implementations.

Figure 2-2b illustrates a similar understand/use dichotomy, but at a higher level of abstraction
in the system engineering process. In this case:

* An understanding of a domain architecture can aid a requirements analyst in analyz-
ing and allocating requirements.

» A system designer can make direct use of the domain architecture in developing an
appropriate application architecture.

Finally, Figure 2-2c¢ illustrates the scenario where a more complete set of products from domain
analysis are used through a broader spectrum of system engineering activities, and where the
results of successive instantiations of system engineering life-cycles feed back to ti.c domiain

STARS-VC-B005/001/00

28 February 1994

products to incorporate application-specific variations. Figure 2-2c can be considered a model
of the ideal integration of domain and system engineering.

Domain Requireiments

use

Domain implementation

Domain Requirements understand : Appiication Requirements
Domain Architecture Appiication Architecture

Appilication Requirements

Domain Architectvre understand Application Architecture
Domain implementation -458::pppumn impi

(a) Implementation-Level Integration

Ppplication implementation

(b) Architecture-Level Integration

Domain Requirements

'/—"’f feedback & evoive \

Domain Architecture
Domain Impiementation

Application Requirements

Application Architecture

plication lmplemmaﬂor‘

(c) Domain-Level Integration

Figure 2-2 Information Flow in Integrating Domain and System Engineering

While Figure 2-2c may be an ideal scenario, a number of technical and economic factors may
constrain the nature of the endpoints of the integration relationships. Examples of such factors

include:

The underlying domain may not be structured in a way that is meaningfully con-
veyed as a domain architecture, e.g., domains of missile guidance algorithms,
mathematical routines, digital sound samplings, etc. This illustrates scenarios where
domain-products of horizontal domains or non-architectural vertical domains are in-

tegrated with applications.

The application domain may not be sufficiently stable (in terms of requirements, ar-
chitectures or implementation technology) to warrant the investment of developing,
or to expect the existence of, domain implementations. This illustrates scenarios

Page 10

STARS-VC-B009/001/00 28 February 1994

where domain analysis and architecture specification is occurring simultaneously
with application development, perhaps as a means of prototyping domain implemen-
tations, as is the case with Portable Reusable Integrated Software Modules
(PRISM)/Generic Command Center (GCC) developments (see Section 3.1).

* The analysis techniques used to produce domain products may not have generated
all of the products depicted in Figures 2-1 and 2-2, or may not have generated prod-
ucts useful to a particular system engineering process. This illustrates scenarios
where the domain engineering life-cycle may have been constrained by economic
factors to generate only a partial set of products (e.g., requirements but no architec-
ture), and scenarios where different organizations with incompatible notions of
supply and demand-side processes produce or require different domain products.

* The system engineering processes may not be able to make use of domain products
for reasons of process maturity. For example, an organization struggling to codify
and institute repesatable analysis and design processes may find it more practical to
attempt a modest level of supply-side/demand-side integration, such as
implementation-level integration as illustrated in Figure 2-2a.

* The underlying means of integrating domain engineering with system engineering -
the reuse library - may not adequately model, or provide access to, domain
requirements or architectures. This illustrates scenarios derived from the use of con-
ventional component-oriented reuse repositories.

The above factors are by no means exhaustive, but are intended to illustrate the following point:

The manner in which supply-side and demand-side reuse processes are integrated depends upon
many factors, including the nature of the domain, the kinds of domain-oriented components that
are available, the nature of the supply-side processes, and the capabilities of the reuse technology
used to convey the results of domain engineering to system engineering pro-esses.

All of these points are of particular importance to the CARDS Program because CARDS must
attempt to convey in its reuse blueprint the techniques and technology necessary to develop
domain-specific reuse libraries in a way that is independent of the application domain, domain
analysis methods, and system engineering methods. Further, this is important so that the CARDS
reuse blueprint can assist in adoption of these techniques in a variety of DoD organizations.

Thus, CARDS is attempting to describe the means of integrating demand and supply-side
processes without constraining the nature of either of these processes. For this reason, CARDS
finds it necessary, and convenient, to view the creation of a domain-specific library as an activity
which is independent of domain and system engineering life-cycles.

2.1.2 Domain vs. Library Modeling

Part of distinguishing domain engineering from library engineering is differentiating domain
analysis and modeling from library analysis and modeling. Domain analysis refers to the

Page 11

STARS-VC-B009/001/00 28 February 1994

analytical processes for scoping domains and identifying the key concepts and common and
variant features, etc. Domain modeling refers to the formal characterization of the results
of analysis in some representational form (ERA models, feature models, taxonomies, SADT
diagrams, glossaries, etc.).

Library analysis, on the other hand, refers to the analytical processes for constructing the library
system used to integrate the results of domain engineering into system engineering processes. As
already mentioned, this design activity needs to take into consideration many factors affecting
this integration relationship. Library modeling refers to the formal characterization of the library
system. In some domain analysis techniques, some (but not all) aspects of the library modeling
are produced as domain analysis by-products (e.g., facets from Prieto-Diaz’s methods [33]).

One way to view the separation of domain modeling from library modeling is depicted in Figure
2-3. The domain model encompasses elements such as glossanes, context models, and economic
models, while the library model encompasses search heuristics and prototyping support services,
in addition to meta-level information about various components in the library (with Commercial
Off-the-Shelf, COTS, license data being the illustration of this in Figure 2-3). Both models
overlap in their use of domain requirements and architecture models. Note that this is an
illustration drawn from the Command Center Library; different library instantiations may choose
different partitions.

Domain Requirements

~——— Search Heuristics

COTS License Data

Composition Rules and
Prototyping Support

Economic Models Domain Architecture

Figure 2-3 Relationships between Library and Domain Models

An important issue raised by the separation of library analysis and modeling from domain analy-
sis and modeling is harmonizing the content of the library model with that of the various models
produced during domain analysis. Various questions need to be answered, including:

e Which models produced by domain analysis should be used to produce a library
model?

Page 12

STARS-VC-B009/001/00 28 February 1994

« Should domain models be \'mapped\’ into a library modeling formalism, or should
the domain models remain in their original formalism? (And if so, how should this
formalism be integrated into the library model?)

* How should “he library model be kept consistent with the domain model, in cases
where the underlying domain and/or domain analysis continues to evolve?

Answers to questions such as these depend upon the nature of the domain and domain analysis
processes, the nature of the library modeling system and formalism used, and the kinds of
applications to be developed for the library. Before describing how these questions are being
answered for the Command Center Library, a discussion of domain and library modeling, and
the CARDS reuse library infrastructure is in order.

2.1.3 Domain Modeling

The techniques used to model domains are as numerous as proposed domain analysis methods.
Domain modeling formalisms include, but are not limited to, feature lattices [11], SADT diagrams
{31], ERA diagrams [11], domain-specific languages [29], module-interconnection languages
[22], and semantic networks [19].

One of the justifications for separating library modeling from domain modeling is precisely
this diversity in domain modeling formalisms - and no industry consensus on domain modeling
formalisms appears to be emerging.

Despite this diversity, however, some key concepts about domain analysis and modeling have
emerged, specifically as these analysis and modeling techniques relate to both domain-specific
reuse and model-based engineering [18]. These key concepts include:

 specification of a domain architecture, i.c., a model conveying basically two mean-
ings: one of components, connectors, and topologies, i.e., arrangements of
components and connectors; and engineering design techniques, i.e., known best
practices.

» separation of the domain architecture from specific realizations of the architecture,
and from the requirements of applications within the domain (as implied in Figures
2-1 and 2-2)

» capture of both commonality and variation within the domain

CARDS considers these to be the key concepts of domain analysis. The meaning and use of
domain architectures is discussed below to provide a foundation for understanding the CARDS
library modeling approach taken for the Command Center Library.

2.1.3.1 Domain Architectures

Applications in a particular problem domain tend to exhibit similarities in components and in
the architecture in terms of the arrangement and use of components. Experts in a particular

Page 13

STARS-VC-B009/001/00 28 February 1994

domain usually have an informal, often unwritten, model in mind when constructing a system.
An architecture provides a formalized version of such a conceptual model.

While a precise and universally accepted definition of the term “software architecture” remains
a topic of philosophical debate, CARDS use of the term is based upon the understanding that
the domain architecture:

e defines the functionality of, and interfaces between, major subsystems within the do-
main

« provides the basis for constructing and relating domain implementation components

+ provides the basis for mapping (or allocating) domain requirements to domain com-
ponents, and to specific implementations of the domain architecture created by
system engiiieering processes

There are, of course, other uses for domain architectures, €.g., they can serve as the basis for
creating industry-wide standards for applications within a particular domain. However, this
report is specifically focused on the application of domain architectures to library modeling and
to the representation of those architectures in the library model [37].

2.1.3.2 Domain Architectures: Genericity versus Abstraction

The above definition of a domain architecture is based upon an interpretation of the purpose
of a domain-specific software architecture which is, unfortunately, not widely understood or
universally appreciated. That is, CARDS believes the purpose of a domain architecture is to act
as an abstraction which can be used to describe many different implementations and can satisfy
different requirements.

This may seem like a reasonable interpretation of the purpose of a domain architecture. There
is, however, an alternative view, one which CARDS believes is less flexible: that a domain
architecture describes only the commonality among different applications in the underlying
domain. This view of a domain architecture is often conveyed by terms such as "generic
architecture” (although not every use of the term generic architecture necessarily conveys this
meaning). To distinguish CARDS use of the concept of domain-specific software architecture
from this less flexible view, the term domain architecture will be used in preference to generic
architecture.

2.1.4 Capturing Commonality and Variation

On the commonality side, an architecture which defines stable interfaces among subsystems and
components provides the basis for standardization. When well-defined standard interfaces are
present, one is free to select a component based upon its ability to meet mission requirements,
without having to be concerned with low-level interface issues. Standard interfaces enable
construction of components with newer, high-quality algorithms, resulting in increased accuracy,

Page 14

STARS-VC-B009/001/00 28 February 1994

performance, and other improvements without the need for major restructuring of previously
developed components or full-scale applications. This enables an orderly evolution to increased
capabilities, performance, and quality.

In the long run, commonality can also form a basis for wide-scale industry and Government
agreement on the specifications for reusable components for a particular domain. This would
provide the kind of specification stability required to support the birth of a software component
industry.

On the other hand, requirements for individual command centers (i.e., mission-unique function-
alities) vary in subtle ways, such as variations in capacity, performance, use of real-time data,
cost, and so on. It is unrealistic to expect that for all domains any specific implementation
of a domain-specific software architecture can satisfy a sufficiently broad set of domain re-
quirements to allow amortization of the domain engineering investments over sufficiently many
system engineering life-cycles. More flexibility is required to allow selection of some subsystem
iinplementations and the flexible composition of variations of other subsystems from lower-level
domain components.

To help clarify the distinction between commonality and variation consider the diversity found
within the common requirements of a domain. In other words, variation in this context refers to
the diversity that can be found within a particular family of components for a specific domain.
For example, a particular domain may require a data-base management system (DBMS), while
different architectures from that domain may be based in part on DBMS systems with specific
characteristics (e.g., differing levels of security). This flexibility found within the commonality
produces the variation.

Mission-unique functionality is often the most complex and expensive part of system develop-
ment. Consider, for example, that 80% reuse of commonality on a system does not necessarily
mean that 80% of the effort required to implement the system is complete. The remaining 20%
from mission-unique aspects may require 80% (or more) of the total development effort.

The point to be made here is that the amount of reuse employed is not the particular issue.
Of more importance is the amount of developmen: time and expense that reuse fulfills towards
completion of a system. Minimization of that remaining effort and cost comes from employing
reuse in both commonality and variation, supporting CARDS view that both aspects of domain
architectures must be captured.

2.1.5 Architecture Representations

It is envisioned that by focusing on higher-level products from the software and system
engineering life-cycle, such as requirements and architectures, a higher-level of granularity of
reuse can be achieved (i.e. reuse in-the-large — mega-programming). This is not greatly
disputed, however major obstacles do inhibit reuse of those higher-level products from systems
and domain analysis. In the GAO report on Software Reuse it was stated that:

Page 15

‘_—G

STARS-VC-B009/001/00 28 February 1994

"... formally representing systems designs and architecture in a reusable form is verv difficult
because they are not as tangible as code. Further, standards and tools to represent and develop
systems designs and architectures are lacking.” [24]

As discussed earlier, a key goal in defining a domain architecture is to capture the commonality
and variation of exemplified systems from that domain and then extend that architecture to refine
future applications from those exemplars. From system to system, independent of domain, it is
generally exhibited that the way one organization typically depicts its application’s architecture
vastly differs from another organization’s view of their application, even in the same domain.
Besides the complexity of being able to reuse either one of those architectures in a third instance
of an application in that domain, simply trying to deduce and capture the commonality and
variation of the two initial domain applications is, in itself, a non-trivial matter.

This quick deviation of architecture descriptions from applications and systems within a domain
can greatly be attributed to:

» disjoint terminology used by different organizations asserting the same semantic
meanings to architectural elements (i.e., journalor vs. recorder).

= varying levels of abstractions used to represent architectural elements (i.e., system
manager with network management capabilities vs. a system manager without net-
work management capabilities).

 close interdependencies between mission-specific and mission-independent portions
of the architecture;

» close interdependencies to implementation (i.e., software/hardware) constraints.
» and "ghostly” ties to past system legacies and existing system lineages.

In Perry and Wolf [30], they point out that each application or system is the manifestation
of a new software architecture. This is due to the fact that the software industry has yet to
establish a standard set of architectural representations and styles from which new systems
can be modeled. The inability to describe and document software architectures in a formalized
manner that is consistent and comprehensive from system to system within a specific domain (let
alone independent of domain) is a specific challenge when trying to formalize a representation
of those varying architectures in a library model.

Motivation in striving for a common architectural representation is that it can be used as a
library model which provides the foundation upon which library services and applications are
established (see Section 2.2.1). Further, the concepts discussed in this document need to be
sufficiently formalized in that the CARDS approach to library development can be applied in a
systematic and repeatable fashion and yet be generalized so that the approach is not restricted to
a narrow range of application domains. CARDS is interested in ways to define formal models
for each element of the library mode! anatomy and their inter-relationships in such a manner

Page 16

STARS-VC-B009/001/00 28 February 1994

that those formalizations can be utilized to describe other systems and applications within the
domain as well as systems in other domains.

The approach that CARDS is investigating is the use of SARs (Software Architecture
Representations) as a means for formalizing the taxonomy of the elements that are used to
compose an architecture and the interconnections between those elements. The use of SARs
provide the formalism of describing an application or system architecture in the ternus of
that SAR. The greatest advantage, from the perspective of CARDS approach to library model
development, is a structured approach to describing software architectures in a manner that can
be systematically utilized beyond the scope of the current application domain. With this formal
model, library reuse tools can be developed (in much the same way compilers are developed
independently for high-level languages) to perform various library services based on the encoded
architectural representation. Further, architectures described in terms of the SAR provide a means
to which commonality and variation can be exhibited via, potentially, a mechanical means (in
much the same way the UNIX diff(1) facility is used to highlight the differences in two higher-
level source code files in the same language).

Comparing SARs for formalizing architectural representations to the advantages and gains
provided by higher-level language like ‘C’ or Ada for the evolution of compiler technology
may be sufficient. A compiler developers focus is not on the syntax and semantics of the
code being parsed and compiled (that is already been defined via language standards) or any
potential application constructed with the compiler. Rather their focus is on the optimization
and features of those compilers and tools to support the development environment surrounding
the compiler. The SAR is intended to define a starting point for which architectures can be
described thus providing formal modeling conventions which will define structured rules for
representing architectures in a modeling formalism. From this, a systematic approach can be
applied to construct tools which leverage those architecture descriptions and provide a myriad
of software engineering and reuse library services which are less dependent upon the nature
of the application being architected. Our efforts in architecture representation is focused on the
representations of those properties of system architectures which support a specific set of existing
and planned automated library services and concepts of library usage[16].

It is also important to point out that such an undertaking is a non-trivial matter. The
ARPA/DSSA (Domain-Specific Software Architectures) program(8] is looking at next-generation
system design and the theory of software architectures and their representation. The ARPA/
PROTOTECH program is investigating the Module Interconnection Formalisms (41] and the
theory of inte~vation. Both of these programs have a profound impact on CARDS in that the
results (as well as others in the research community) can be leveraged for the activities that
CARDS must bring into practice.

2.1.6 Library Modeling

As noted earlier in this document, CARDS views a library as a library model and a set of
applications, and the construction of a library model as a design activity which balances various
requirements. What "goes into" and what "comes out of" the model is dependent upon many

Page 17

“

STARS-VC-B009/001/00 28 February 1994

factors, including: the library modeling formalism used, characteristics of the domain engineering
life-cycle (e.g., the kind of domain analysis that was conducted), and characteristics of the system
engineering life-cycle (e.g., the kind of library applications that need to be constructed to support
the anticipated system-engineering processes). Chapter 3 provides details on how some of these
issues are addressed for the construction of the Command Center Library.

The main point to note about library modeling is that the library model includes information in
addition to that derived from, or pertinent to, domain analysis. This point is illustrated in Figure
2-3. Information supporting the supply-side (i.e., user demands) can include:

* meta-level attributes describing elements derived from the domain model, such as
commentary or other documentation on domain requirements, architectures and
components

* information used specifically to support library applications such as graphical
browsers, system composers and component qualifiers

* inter-library information, such as indexes to other library models (from other
domains, i.e., model intraoperation) and indexes into other library systems (i.e., in-
teroperation)

* integration of other representation schemes, possibly through the invocation of
CASE design tools

2.2 CARDS Library Development
2.2.1 Library Modeling Approach

The approach to modeling the Command Center Library is evolving to support various develop-
ment procedures (e.g., component qualification - see Section 2.2.3) and library applications (e.g.,
system composition and component qualification applications - see Chapter 3). It is not surpris-
ing that development in these areas result in a refined view of how the library model should
be structured, and what kind of information is needed in the model to support such activities.
Figure 2-4 illustrates this new approach.

Page 18

STARS-VC-B009/001/00 28 February 1994

Allocation Constraints Composition Constraints

Architecture implementation
constmlms Constraints Constraints
Problem Domain Solution Domain
\\ Constraints
A |nferencers
0 Concepts

Figure 2-4 Library Sub-Models

The revised modeling approach partitions the library model into three major groupings of
constraints: domain constraints, architectural constraints, and implementation constraints. These
groupings correspond to the products of domain engineering described in Section 2.1.1. At a
high level, the purpose of this partitioning scheme is to allow a differentiation in the modeling
of the problem space (traditionally the purview of domain engineering) from the solution space
(the purview of system engineering). CARDS believes that this partitioning will:

* help library modelers focus on capturing the required information to support system
composition (and future applications)

» isolate portions of the model which are likely to undergo evolution (particularly the
implementation and architecture constraints)

* better support library users by allowing users to work at several levels of abstraction:

* mission-level abstraction, such as "the system must support global monitoring of
these events”

 architectural-level abstraction, such as "I am interested in the message processing
subsystem of a command center”

» implementation-level abstraction, such as "I want to use Ingres, rather than
Sybase, for my command center”

Page 19

STARS-VC-B009/001/00 28 February 1994

The domain constraints attempt to capture the key requirements supported by domain applications
that can be composed via the CARDS library. The architecture constraints attempt to capture
the high-level model of subsystem relationships and their key functionality. Finally, the
implementation constraints capture the lower-level constraints that describe the relationships
of particular COTS and GOTS (Government Off-the-Shelf) components with each other and
with the underlying computing platform.

Between these groupings there are other constraints that need to be mapped between the various
sub-models. Between the domain and architecture constraints there are allocation constraints.
These constraints model the allocation of requirements to the architecture; this mapping supports
the traceability of key requirements to parts of composed systems. Between the architecture
and implementation constraints there are composition constraints. These constraints show which
components are used to implement some part of the architecture, and they support the system
composition tool in composing systems that are consistent with the domain architecture.

2.2.2 Library Model Development

The primary phases of creating a model-based library are domain engineering, library modeling,
and component qualification. Domain engineering refers to those techniques and processes for
identifying and organizing knowledge regarding a domain and the description and solution to
the problems uncovered [32]. Library modeling is the process of encoding the products of
domain engineering. These products include (but are not limited to): generic architectures,
domain models, and domain taxonomies. Component qualification is the p.ocess of acquiring
and evaluating components for the domain-specific library.

Library creation is typically a linear process, where the products of domain engineering are
encoded within the library modeling phase. Component qualification occurs after the encoding.
However, the CARDS library model creation/development process is an iterative one. Figure
2-5 shows the CARDS library model creation process.

2.2.3 Component Qualification Process

Traditional approaches to architecture development are bottom-up, basing the architecture on
low-level requirements. More recent approaches have applied "vision" as an input to architecture
development. This approach incorporates architectural design decisions based on long-term goals
and functionality of the system.

In addition to these two inputs to architecture development, CARDS believes that legacy systems
can have a value-added impact on architecture specification. An architecture may be designed,
either fully or partially, on an existing software base, thus minimizing the amount of in-
house software that must be developed for the system. The PRISM project, as discussed in
Chapter 3, is taking this approach in developing their generic command center architecture. The
availability of software to fulfill requirements, while minimizing the amount of system-specific
software development, can place constraints on the architecture based on the functionalities of

Page 20

STARS-VC-B009/001/00

28 February 1994

that software. For this reason, component qualification plays an important role in the CARDS
library development and modeling processes.

GOTS constraint model Strary model

COoTS

component library
qualification | jomain modeling

oriteria

domain
engineering

publ
requirements

Figure 2-5 Feedback and Iteration in the Model Development Process

2.2.3.1 Qualification’s Role in Model Development

As shown in Figure 2-5, component qualification is an integral part of the model development
process. It fulfills several roles in the library model creation process. The key role of component
qualification is to measure the "form, fit, and function” of a component against the constraints
inherent within the library [23]. Additionally:

It provides a basis for determining the appropriateness or correctness of the architec-

ture. An overly restrictive architecture can be discovered if there is a lack of
components that match the constraints of the architecture and the desired functional-
ity. Another indication is the excessive need for developing "wrappers” that are
used to provide missing functionality from the components. This information may
uncover that the architects did not thoroughly understand or were unaware of the
appropriate software that can be used to populate the model-based library. Modifi-
cation of the architecture may then be required to make it more responsive to the
existing software base. This is important for those systems that want to leverage

reuse of existing software (legacy systems) for library population.

= It reflects the constantly evolving nature of the software industry and software devel-
opers. The benefits of this relationship is realized by the fact that technological

Page 21

STARS-VC-B009/001/00 28 February 1994

change within the software industry may render pieces of the architecture unneces-
sary or that several modules within the architecture may be performed by a new
single application. Technical evolution may also force the alteration of relationships
between modules within an architecture.

» It provides a vehicle for refining component evaluation criteria and constraints. The
domain engineering process establishes domain-specific criteria and constraints
which help define the library model. The feedback from the component qualification
process thus results in the updating and evolution of the library model.

2.2.3.2 The Basis for Component Qualification

Much of the work CARDS is accomplishing in library development is based on the views of
a library as a library model and a set of applications and construction of a library model as
a design activity which balances various requirements. What “goes into" and what "comes
out of" the model is dependent upon many factors, including: the library modeling formalism
used, characteristics of the domain engineering life-cycle (e.g., the kind of domain analysis that
was conducted), and characteristics of the system engineering life-cycle (e.g., the kind of library
applications that need to be constructed to support the anticipated system-engineering processes).

The representation of the domain information (e.g., domain model, domain requirements,
taxonomies, etc.), domain architecture, information supporting automatic composition, and the
other information stated above, causes a natural partition of the library model into groupings
of constraints (a formalized set of complex relationships). domain constraints, architectural
constraints, and implementation constraints, as presented in Section 2.2.1 and Figure 2-4. Below
is a more detailed description of these constraints [28].

* Domain constraints. Domain constraints represent the mission-level requirements
identified within the boundaries of the domain. They determine the functionality of
the system expressed in terms and language dominant within the domain.

* Architectural constraints. An architecture represents the set of modules or subsys-
tems comprising a completed system and the relationships between cooperating
sub-systems or modules. Architectural constraints are a formalism of the relation-
ships between these subsystems and any limitations that may be placed upon them.

* Implementation constraints. The particular hardware/software environment where
the library system resides and is expected to operate provides the basis for the
implementation constraints within the model. These constraints provide the require-
ments that the individual software modules must adhere to.

* Allocation constraints. Allocation constraints refer to the mapping of the domain
constraints to the responsibilities and functionalities of the various subsystems com-
prising the architecture and supports traceability of key requirements.

Page 22

STARS-VC-B009/001/00 28 February 1994

* Composition constraints, Composition constraints identify the relationships between
components that are necessary to implement part of the architecture and any subsys-
tem.

While allocation and composition constraints are important residents of the CARDS library
model, they play minor roles for component qualification. The domain, architectural, and
implementation constraints resident within the CARDS library model form the basis for
component qualification.

2.2.3.3 Domain and Common Criteria

CARDS views component qualification as a two-tiered effort. The first tier of qualification
measures the potential component against domain criteria, the measurement of the \‘form, fit,
and function\’ applied to the application (e.g., command center) domain. These criteria are
a composite of domain, architectural, and implementation constraints as described in Section
2.2.3.2. Second, a potential component is measured and evaluated according to its general
or common characteristics regarding its performance, reliability, maintainability, etc. These
characteristics are referred to as common criteria and are not influenced by the command center
domain, nor any other domain. They can be thought of as domain independent and include the
type of component qualification typically performed by component-based libraries.

An important task in deriving the domain criteria is the decomposition of the domain constraints
into the requirements or functionality required by each subsystem of the domain architecture.
Generally, these constraints are expressed in domain terminology and not in terms that are
readily transferred or translated into the capabilities of off-the-shelf products. Depending upon
the specificity of the domain engineering products and the domain experience of the personne!
performing the evaluations, this mapping can be an iterative process, with refinement of the
criteria coming with each iteration. This activity must be performed for every component class
considered for inclusion into the CARDS library model.

The common criteria refer to those characteristics that are typically qualified within component-
based libraries. These criteria include measuring the component’s reliability, maintainability,
portability, etc. Methods typically employed for determining if the candidate component meets
the common criteria include examining component documentation, finding out the hardware/
software platforms that the component operates on, determining if on-line help and technical
support from the supplier, maturity of the component, bug reports, revisions, test procedures
supplied by the source of the component, indcpcndent reviews of the component, etc.

2.2.3.4 Qualification Methodologies

Within component-based libraries, a component that is a candidate for inclusion is qualified based
on its reuse potential (determined by a component’s general functionality and its perceived
relativity to the library’s clientele [34]), modification effort (in regards to the local library’s
coding standards, software maintenance, and configuration management policies), and general
characteristics (e.g., reliability, maintainability, and portability). After a candidate component

Page 23

STARS-V(-B009/001/00 28 February 1994

successfully passes these evaluation criteria, it is tested and classified. Classification determines
the component’s venue within the library.

In model-based libraries, component qualification emphasizes matching the component’s
capabilities and functionalities to pre-determined domain criteria. Common criteria similar to
that used within component-based libraries is also used in this qualification process, but does
not have the impact that it does in component-based libraries. Classification of a model-based
component is done according to the subsystem of the domain architecture that is satisfied by the
component’s functionality.

2.2.3.5 Component Evaluation

Several factors must be considered when evaluating a candidate component [23]:

* How well did the candidate component meet the domain criteria? Does it meet all
of the critical critena? What are the acceptable variations in performance?

» If some part of the critena is not met, can wrapper software be obtained or devel-
oped to fulfill the missing functionality?

« If wrappers are required. what is the feasibility in terms of time and resources for
obtaining or developing them?

» Can the candidate component be integrated with other components to form a com-
posed subsystem? Are there any performance degradations after integration? Are
wrappers necessary for integration? Are the integration tests performed with a live
system or with a prototype - does it matter?

* With the common criteria, does a poor evaluation with regards to portability, relia-
bility, etc., affect or contradict any domain criteria? Will it affect any of the
combinations of composed systems?

The CARDS qualification process attempts to remove as much subjectivity as possible in
measuring a component against common and domain criteria. With each component class, test
plans or scripts to test each of the domain criteria will be developed. These scenarios ensure that
components within the same class can be evaluated in the same manner and that the evaiuation
results can be compared.

The CARDS qualification process described above plays a significant role in the preparation of
component glossies and technical briefs for the library [13). The glossies and technical briefs
provide the library users a focused view of different components. From the component vendors
perspective the glossies and technical briefs provide a vehicle for marketing their components
and better understanding the requirements necessary for the component to fit the domain. The
glossies and technical briefs can be accessed on-line and will also be available in postscript
format within the library.

Page 24

m

STARS-VC-B009/001/00 28 February 1994

3 Domain-Specific Application of Model-Based Reuse Libraries

As discussed in the previous chapter, the library model, derived from domain analysis, gives us
a formal encoding of the relationships between the reusable components in a model-based reuse
library. Further, the library model can become the basis for a library framework in which to
build applications and leverage those relationships to perform a variety of library services. These
services can be designed to take advantage of the knowledge encoded in the library model and
make automated decisions based on constraints modeled in the library model. This modeling
approach can support a variety of library services, or applications, to enhance the reusability of
library components in the software and system engineering life cycle.

Determining the usage scenarios, what services and phases of the engineering life cycle a model-
based reuse library is intended to support is a critical factor in determining what knowledge
and modeling approach will be used in the development of the library model. Additionally,
understanding the nature of the application domain which is being modeled is also necessary to
assist in scoping those services.

The initial domain-specific, model-based reuse library developed by the CARDS Program is
in the Command Center domain (a sub-domain of C3I). This library, the CARDS Command
Center Library (CCL), is using the results of the Portable Reusable Integrated Software Modules
(PRISM) program. The CARDS and PRISM programs have evolved into a cooperative working
arrangement whereby PRISM acts as the source of and provides expertise in command center
technology, while CARDS acts as the source of and provides expertise in domain engineering
and library technology.

3.1 PRISM Program and Approach

The PRISM Program is engaged in simultaneous domain engineering and system engineering
activities. The PRISM domain engineering work is performing a prototyping-driven effort to
define a generic command center (GCC) architecture. This definition is proceeding in parallel
efforts that incorporate both top-down and bottom-up design.

The top-down analysis is driven by in-house expertise in command center requirements and past
implementations, and by examination of existing command center systems and documentation,
such as the Defense Information Systems Agency (DISA) Command Center Design Handbook
(CCDH) [12]. Simultaneously, a bottom-up command center prototyping effort is refining and
expanding the generic architecture to accommodate increasing functionality and "lessons-learned”
from prototyping efforts. An additional aspect of the PRISM approach is a heavy emphasis on
the reuse of existing GOTS and COTS components to implement the GCC architecture. The
dual action of analysis and prototyping, and the focus on COTS and GOTS components, is an
interesting alternative to a more theoretical domain analysis approach.

One goal of the PRISM Program is to stay consistent with the "Command and Control (C2)
Store" - a conceptual model for developing command centers - by utilizing the GCC architecture
to produce prototypes and reduce the time required to field an operational command center.

Page 25

STARS-VC-B009/001/00 28 February 1994

The PRISM stated goal is to support prototyping of approximately eighty percent (80%) of a
functional command center with the PRISM architecture and C2 Store.

Note the complimentary relationship between the support of the CARDS Command Center
Library and the PRISM programs GCC for the C2 Store. The Command Center Library along
with PRISM (and others) serve to bring the C2 Store concept to reality. Over time the Command
Center Library will evolve and grow to encompass other architectures and aspects of command
centers.

I
1
Domain Engineering System Engineering
DEFINE ANALYZE USER
ARCHITECTURE REQUIREMENTS
IDENTIFY
DEVELOP RAPID
CANDIDATE
COMPONENTS ' PROTOTYPE PLAN
INTEGRATE C2 SERVICES
GENERIC COMMAND Run; PROTOTYPE |
CENTER PROTOTYPE INTEGRATION/DEMO
DEVELOP
QUALIFY
COMPONENTS ‘W%TATKON
Domai
Products
DEVELOP/FIELD
OPERATIONAL e RFP
SYSTEM

Figure 3-1 CARDS and C2 Store Concept of Operation

Figure 3-1 illustrates the environment of the CARDS Command Center Library and PRISM
programs GCC architecture relative to the C2 Store concept. Domain engineering represents
the supply side of PRISM’s domain analysis process to define domain architectures to which
candidate, reusable components are certified and qualified against. Those components are then
integrated into the GCC architectures and made available to the CARDS CCL. Domain knowl-
edge, requirements, architectures and components and the relationships among those products
are used as input into the CARDS library development process [27].

On the demand side, the system engineering process draws on those products and domain experts
to analyze and formulate end user requirements and from those requirements rapidly develop
prototype applications from the C2 domain. Demonstrative systems developed during rapid
prototyping are used to focus in on the end user requirements and to identify what portions of
the application can be utilized from the C2 Store and, more importantly, what portions of the
application have to be developed through traditional system and software procurements. That

Page 26

STARS-VC-B005/001/00 28 February 1994

portion, the mission-specific portion, along with that obtained from the C2 Store are fielded as an
operational system. The features and capabilities of the operational system which distinguishes
it from others (typically the mission-specific portion) are used as feedback into the domain
engineering and library modeling process to capture those features for future system engineering
capabilities.

The process of qualifying candidate components for inclusion into the model-based reuse library
and the composition of those components to rapidly form application prototypes established
the end user requirements for the CCL to provide library services which support the concept
of operation for the C2 Store. CARDS does recognize the extensibility of these services to
other application domains. Additionally, the PRISM approach and objectives have a number of
consequences on CARDS library modeling:

* The PRISM GCC architecture is evolving at a rapid pace, as is the functional capa-
bility of the GCC prototype.

« The by-products of the PRISM domain engineering activities are tightly coupled
with the GCC prototypes.

These have an impact on the design and construction of the library model and applications
comprising the C2 Store. The following sections expand upon these concepts.

3.2 The C2 Model and Its Applications

The C2 Store consists of a library model derived from documentation and prototypes produced
by the PRISM Program, and from existing and planned applications for Command Center Library
users (as discussed in Section 2.2.1). These applications consist of [21]:

» graphical browser (already developed as part of the core STARS-Software Technol-
ogy for Adaptable, Reliable Systems, RLF-Reuse Library Framework)

» system composition tool (in prototype development)

» component qualification tool (in prototype development)

The PRISM Program provides the core of the C2 library mode!l in the form of documents
describing command center requirements, a generic command center architecture (the GCC
architecture), and prototype command center implementations. These documents and prototypes
are analyzed and then encoded into a library model using RLF.

The library modeling services provided by RLF [1, 2] include a structured inheritance network
formalism similar to KL-ONE [9] and a specialized rule-based inferencing system. Section 2.2.1
described the approach taken to using the RLF modeling formalism to model the command
center domain, while Section 3.2.1 discusses architectural and computational model details of
the system composition application. An overview of the qualification tool is presented in Section
322

Page 27

STARS-VC-B009/001/00 28 February 1994

3.2.1 System Composition Application

The objective of system composition is to provide command center library users with tools
to automate the composition of new command centers, or portions thereof, based on user
requirements from components within the C2 Store. The approach is to apply user input to
the C2 Store library model to produce prototype demonstrations of systems, assist users in the
decision making process of building new systems, and when possible, provide users with the
actual software to build them.

Figure 3-1 provides a top level view of the system composition application. There are three
inputs to the "System Composer”: a model of the Command Center Library, target system
constraints elicited from the user, and a rule-base (system composition model) and heuristics for
building the system. The outputs of the system composition tool are system demons‘rations and
composed systems (or portions of a system).

Target System System
Constraints \ Demonstration
System
Composer
%
[System
Command Center
Library Model 2
System Composition
Madel and Heuristics

Figure 3-2 System Composition - Top-Level Architecture

3.2.1.1 Target System Constraints

The target system constraints are acquired from the user through a structured dialogue. This
dialogue is controlled, and defined, by both the structure of the Command Center Library model,
and by the system composition model. These constraints convey:

* requirements on system functionality, such as the kinds of functions, tasks and activ-
ities the command center will support [12]

Page 28

STARS-VC-B009/001/00 28 February 1994

 aspects of the domain architecture of interest to the user, such as message processing
and geographic information systems

« implementation constraints, such as platform constraints (e.g., Sun vs. HP), system
software constraints (e.g., X11/Motif vs. OpenWindows), COTS constraints (Ingres
vs. Oracle), performance consiraints (1500 messages per second), etc.

3.2.1.2 System Composition Model (rule-base) and Heuristics

The system composition model is "consulted” by the system composer to determine when and
how to query the user for the necessary user-defined requirements. The system composer
transverses the library model and at various concepts in the model may have alternative strategies
for composing a system. If the concept has several specializations, the composer may need
to elicit information from the user to help determine which of the specializations is most
appropriate; conversely, the composer may have default rules to consult, either built-in to the
system composition model. or encoded as part of the library model.

3.2.1.3 System Demonstration

Part of the process of determining which variants of a domain architecture (or which
implementation of this architecture) are of interest to the user is the demonstration of composed
system functionality. Although in practice there will be some restrictions on which variants
of the system can be demonstrated (for reasons of license restrictions, the degree to which the
componenis are integrated with the library model and with each other, etc.), the goal of the
composition tool is to support iterative, real-time demonstration of system variants.

3.2.1.4 Composed System

At some point, the Command Center Library user will want to “extract” from the system the
results of the composition. The "Composed System” box in Figure 3-1 represents the types of
information which may be provided, in a form suitable for extraction and conveyance to the
user. Examples of such information include:

= the software "wrappers” that provide integraticn among two or more components

» vendor and licensing information about COTS components used in the composition

» implementation information about the composed system, including performance
information, hosting constraints and dependencies, module interconnection informa-

tion, etc.

« documentation about the composition, such as the rationale used by the system com-
poser in addition to a log of the user interaction with the composition tool

+ component and composed system documentation.

Page 29

STARS-VC-B009/001/00 28 February 1994

3.2.1.5 Current Status

The system composition model is designed to be domain and application independent; however,
the degree to which this independence can be achieved has not yet been demonstrated. If
independence is possible, the system composition model can be replaced, e.g., by a qualification
model, to produce an application which automatically generates component qualification plans.
This goal is important since it supports reuse of library application models in different library
domains.

Currently, the system composition tool is implemented in Ada and the GOTS rule-base
inferencing system C Language Integrated Production System (CLIPS). This implementation
uses the RLF modeling formalism for the semantic network structure and CLIPS for the rule-
based inferencing.

The existing prototype focuses on the message processing systems of the Phase III PRISM
prototype. The following components are presently integrated into the system composition
process:

* message generator (textual and graphical)

» message translation and validation (MTV) providing vanilia SQL, Sybase and Ingres
DBMS, and Digital’s DECMessageQ

* system manager (with or without MTV)

* databases (Ingres/Sybase)

Several flavors of the message processing subsystem can be automatically composed and
executed, based on the above components.

3.2.2 Component Qualification Application

3.2.2.1 An Intelligent Assistant

Acquiring and qualifying components for placement in the reuse repository is an important
process that starts early in library development and continues throughout library operation. As
detailed in Volume III of the CARDS Library Operation Policies and Procedures (LOPP) [28],
there. are four distinguishable phases in this process: identification, screening, evaluation, and
adaptation. During identification and screening, a list of promising candidate components is
developed through surveys or vendors and Government agencies. The evaluation phase focuses
on evaluating these components against applicable domain and common criteria. During the
adaptation phase, necessary modifications are made to components for qualification purposes.

The acquisition and qualification process is a knowledge-intensive activity. Intelligent assistants
have been shown to be an effective tool for knowledge intensive activities in other domains
(e.g., equipment fault diagnosis and repair). The CARDS library qualification tool is an

Page 30

STARS-VC-B009/001/00 28 February 1994

intelligent assistant designed to support the evaluation phase by generating consumer reports
far components. This phase is the most amenable to automation because it requires a large
concentration of knowledge and it has a well defined procedure.

3.2.2.2 Overview

The qualification tool has two main steps based on the definition of qualification in the context
of CARDS:

1. Determine where a component fits in the domain model.

2. Decide whether to include the component in the domain-specific library.

Although these two functions are presented as “steps” and logically flow in the order they are
presented, their importance to librarv development may contradict this natural flow. During
initial library population, step 2 is the fundamental role of developers who are trying to fill the
basic architectural elements in 2 domain. Step 1, on the other hand, becomes critical during
the steady-state library operation stage where new components must be placed into a large,
populated model. Since the CARDS library is now in the initial library population stage, the
current qualification tool emphasizes step 2 [25].

3.2.2.3 Current Status

A proof-of-concept qualification tool, which helps a user decide whether to include a component
in a domain-specific library, has been produced and will be made operational in Phase Il of the
CARDS Program.

This prototype version of the qualification tool assumes that the user knows the category (ie.,
class) to which the component to be added belongs. The tool is then invoked at that category in
the library. A questionnaire with which features of the prospective component can be compared
to features of the class is then electronically filled out by the user. The user can then check to
see if the component satisfies the class requirements and hence "qualifies” for inclusion in the
library. If the component fails to qualify, a list of deficiencies is produced. If it does qualify,
the user is given the option of creating a file containing the specific code, which, may be used
to add the component to the model. Final decisions as to the inclusion of components in the li-
brary rests with an administrative control board (see Volume I of the LOPP [28]).

3.2.2.4 Future Plans

Future plans call for implementation of the first step of qualification. There are several options
for this implementation:

= top-down hierarchical search

¢ bottom-up hierarchical search

Page 31

STARS-VC-B009/001/00 28 February 1994

* keyword search

» matching capabilities of a new component with existing component classes in the li-
brary.

Page 32

STARS-VC-B009/001/00 28 February 1994

4 CARDS Reuse Library Support Infrastructure

In addition to the modeling formalisms presented in Chapter 2, there are other technical
considerations for building and maintaining a domain-specific library. The support hardware,
software, network, and telecommunications facilities that make up a CARDS Reuse Library
system provide the base upon which the library system is built. The supporting base consists
of Sun workstations, the Sun operating system (SunOS), Internet (Wide-Area Network (WAN)
technology) and ethernet (Local-Area Network (LAN) technology), various compilers (e.g., Ada,
C), configuration management tools, RLF, AFS, and the X Window Protocol and associated
window managers (e.g., Motif Window Manager (mwm), Tom Window Manager (twm)). The
underlying system software, specifically the X Window System and AFS software, supports
access to the central library from the remote and central sites. The various portions of the
library infrastructure are detailed below.

4.1 The CARDS Library Infrastructure

Figure 4-1 illustrates the software infrastructure used for creating domain-specific libraries in the
CARDS Program. The base system software is the Sun Operating System (SunOS 4.1.3), on
top of which AFS (described in the AFS System Administrator’s Guide [3]) and the X Window
System are built. Library components are stored -under and accessed through AFS which is an
extension to the SunQOS file system structure. AFS was chosen because it provides distributed file
system services which are optimized for WANs. Other distributed file system technology, such
as NFS, could be utilized on smaller scales where network performance is more deterministic,
such as LANs. A detailed discussion of the use of AFS and X in support of a distributed CARDS
Library architecture is discussed in Section 4.3.

Library Modetl
. Library
Maintenance / User Access Tools Library
‘ Software
— Base RLF Services
< ‘ AFS X Window System
System
Sun0S Software
Library Components

Figure 4-1 Infrastructure for CARDS Reuse Libraries

Software making up the library applications include base RLF services (described in the
AdaKNET and AdaTAU user’s manuals {1, 2]), and various tools used for library maintenance
and user interaction (e.g., configuration management and document viewing tools). Configuration

Page 33

STARS-VC-B009/001/00 28 February 1994

management is maintained by RCS. Software used for viewing documents include FrameMakers,
emacs, xedit, and SGMLe.

4.2 CARDS Library Mechanism

The CARDS library mechanism can simultaneously support multiple libraries. Figure 4-2 shows
a CARDS reference model depicting the library mechanism and the supported libraries, and also
indicates the relationship of the libraries to the resources of other virtual library members. The
reference model is described in the following paragraphs.

dunafllr:
ibeary
models interoperation
Library Modeling Services | jnrary
Services Services Stores
browser domal | CAADS
22| el 1 1%
services (RLP) Ti ASSET
=l — R
other rvices >/ N\ 25“5
services... e | B
<+— Library Mechanism ——» <« Virtual Library—>

Figure 4-2 Model-Based Reuse Library Reference Model

CARDS users (including both human and computer agents) access the libraries via library ser-
vices. Currently supported services include: system composition, component qualification, and
interactive graphical browsing.

Library services interact with a collection of modeling services. These services currently only
include domain-modeling services. In the future, these modeling services will be extended to
include engineering modeling notations, such as data flow, structure charts, and state transition.
Both library services and model services are part of the library mechanism. Library models
which are part of the library, not the library mechanism, are constructed using these services.

Library models are connected to reusable assets such as software, documents, etc. through a
virtual repository [17]. The initial ASSET, CARDS, and DSRS interoperation capability provides
a selected set of services which enable the virtual library; other possible services which would
extend the virtual library include: auditing, encryption, digital signature, etc.

STARS-VC-B009/001/00 28 February 1994

The CARDS library mechanism consists of Reuse Library Framework (RLF), a graphical
browser, a System Composition Tool, a Component Qualification Tool, and an Asset Generation
Tool. The software runs on Sun Microsystems workstations with the Unix operating system. A
graphical user interface is provided based on the X protocol.

4.3 Distribution

The library software architecture supports undistributed use at the central site as well as four
different forms of distribution: complete via AFS, partial via AFS, distribution in the absence
of AFS and distribution in the absence of Internet. Remote users and libraries are connected to
the central CARDS library site through a WAN (Internet), as shown in Figure 4-3.

Figure 4-4 shows how the X Window System, AFS and RLF all reside on the central sysiem.
Through use of this architecture, and with the addition of a WAN, remote access sites can
be configured to interconnect with the central site. These options and their advantages and
disadvantages are described in the sections that follow.

Central Site
ALF
AFS | X Windows
SunOS

[

Figure 4-3 CARDS Reuse Library

Pag- 35

STARS-VC-B009/001/00 28 February 1994

Command ASSET DSRS [« « o | Other

Figure 4-4 CARDS Library Wide-Area-Network Architecture
4.3.1 Complete Distribution Via AFS

The primary method of distribution for a CARDS Reuse Library is AFS (Figure 4-5). AFS
provides direct access to the central site’s file system from remote sites and user authentication
options and protection for the library files which prevent unauthorized access to the system.
Remote filesystems may be \'mounted\’ locally and appear as part of the local directory structure.
AFS utilizes a caching facility that allows software and files to reside on a remote system and
operate on a local workstation across a WAN. The software and files accessed from a remote-site
are cached to the remote workstation on the initial access only. Additional accesses of the same
file or software will be from the cached space on the remote workstation.

The disadvantage to having all software distributed via AFS is the potential for reduced
performance. On execution of the library software, the software must be cached to the remote
site. This initial caching operation is noticeably slow due to throughput of communications
across the WAN (which is much slower than a local-area network). However, after the software
is cached, future access will typically not induce the same degradation in performance until the
software is updated. Each time the library software is updated on the central site, the next access
will again require that the AFS cache be reloaded.

Page 36

STARS-VC-B009/001/00 28 February 1994

****Lack of performance may also be attributed to inappropriately tuned AFS client
configuration software (AFS cache size or chunk size).

Central Site Remote Site
AFS AFS | X Windows
WAN n0S
Sun0S S

Figure 4-5 CARDS Library Fully Distributed Via AFS

In using the model of complete distribution via AFS, responsiveness of the initial connection
depends on the throughput of the network. Once the AFS cache contains a copy of the library
software, the throughput is much less of a factor because most references are to the local software
and model and not to the actual components stored at the central site. On the first retrieval of
a component, throughput is again a factor. Successive accesses to the same component do not
incur additional network traffic. Throughput consistency becomes a factor if the AFS cache is
so small that the library software is frequently purged. This is resolved by creating a larger AFS
cache.

4.3.2 Partial Distribution Via AFS

It is expected that a partial distribution (libiury software is located at a remote site while the
model and components is at the central site - see Figure 4-6) will be utilized when either a
very slow link between the central and remote sites exists or the AFS cache tends to be purged,
forcing the library software to be loaded into the cache too frequently.

Page 37

STARS-VC-B009/001/00 28 February 1994

Central Site Remote S1e
X Windows
e - N AFS I
WAN
Sun0S SunOS
a

Figure 4-6 CARDS Library Partially Distributed Via AFS

Partial distribution has the clear advantage that start-up times are consistently fast. The
disadvantage is that each of the remote sites’ software will be managed separately from that
at the central site. Updates of the software could possibly be automated, reducing the problems
typically encountered in this situation (i.e., version control). This approach also requires storage
space to be allocated independently of the AFS cache for library software storage.

Even with the library software stored at the remote sites, the model and the library components
will be maintained at the central site and accessed via AFS. While the model will need to be
accessed each time the library is started, the model files themselves are rather small, so network
access to them is quick. The library model and frequently accessed files will remain active in
the remote workstation’s cache, thus further reducing access time across the WAN.

When only partial AFS distribution is used, network responsiveness should be less of an issue,
since only retrieval of the model and library components is affected. The library software is
always available at the remote site. In this case, low throughput has a mild impact on start-up
performance. Component retrieval performance is the same as with full distribution.

4.3.3 Distribution in the Absence of AFS

Human-machine interface to the library is via the X Window System (or simply X). X is based
on a client-server architecture which can be used to operate graphical displays that are remote
from the central site (see Figure 4-7).

Page 38

STARS-VC-B009/001/00 28 February 1994

Central Site Remote Site
ALF x
AFS | X Client 7P Server
Sun0S

/
; ; o

Figure 4-7 CARDS Library Distributed without AFS

In this scenario, the user works from a remote X-capable interface (either a workstation or an X
terminal) running X, and runs the library software on the central site while displaying the user
interface on the user’s workstation. Access to the library software and model is reasonably fast
as there is no transfer of files across the network. However, client and server software are in
constant communication reiating to images to display, pointer movements and windowing events
such that each interaction with the system involves network access across the WAN. Therefore,
the remote user is at the "mercy” of the WAN and could encounter network access disruption
or poor response time due to heavy network traffic and network performance. Although it is
true that network performance has direct impact on other modes of distribution discussed earlier,
poor performance in this mode of operation has a detrimental impact on the user interface to the
library system itself.

This mode of operation does not provide a seemless and synergistic mechanism to distribute
extracted reusable components into the user’s \'space\’ as is provided by partial and complete
distribution means. In this mode, the user is expected to utilize existing internet protocols (e.g.,
FTP, RCP, etc.) to retrieve extracted components from the central site to their realm. However,
it is not beyond the scope of this mode to permit library users to request off-line distribution
(i.e., cartridge tape, diskettes) of extracted library components.

The advantage to this mechanism is that it does not require a fully configured workstation for
remote access, only simple X-capable machines (e.g., X-terminal). This solution also adopts the
principal advantage of the central site managing the complete software configuration, with no
burdens adopted by the remote site.

Disadvantages include the instability of responsiveness and the need for the user to have access
to the central site beyond the file system (i.e., direct login facilities at the central site for that
user).

Page 39

STARS-VC-B009/001/00 28 February 1994

4.3.4 Distribution in the Absence of Internet

In this scenario, the library user (or their site) is incapable of utilizing any of the modes discussed
above for reasons that prohibit use of the internet due to security requirements for the site or
simply the lack of connectivity to Internet (this is the case for a number of Government sites who
want to utilize CARDS and CARDS library technology). The approach in this scenario (usually
on a case-by-case basis) is to provide the user or the user’s site a cartridge tape of the library
software and the CARDS library(s) (i.c., Command Center Library) of their choice. Performance
issues related to Internet and AFS are avoided altogether as both the library software, library
model(s) and components are locally stored with respect to the remote (requesting) site.

Advantages to this mechanism include near optimal performance and response time, however
the disadvantages of this approach, for the most part, out weigh the advantages for the following
reasons;

* not all components can be distributed in this mode as some may be COTS products
or GOTS products which may have distribution restrictions or copyrights which are
normally controlled and monitored by the central site in other modes of operation.

 library tools and services may not be able to function to specified capabilities due to
components excluded from distribution for reasons stated above.

» traditional configuration iracking and monitoring issues that are raised when new
versions of library software, library models and/or library components are released.

» the amount of storage space at a remote site required to support the library and its
related software.

4.4 Telecommunications

The CARDS library utilizes network technologies and protocols that are compatible with DoD
and Government-wide telecommunications policies. The CARDS libraries network connections
will continue to be established incrementally. Initial nodes are located at organizations serving
as beta sites for library demonstration and testing. The CARDS library will continue this initial
network of active reuse organizations to assess and evaluate network effectiveness and design
alternatives.

All workstations at 8 CARDS Reuse Library site and at each remote site should be interconnected
via a LAN, thus requiring a single connection to 8 WAN. There are many considerations for
this WAN, with the three most critical being throughput and consistency, direct connection, and
connection through a WAN (e.g., Internet).

Since effective distribution of information and components is critical to the success of the library,
a fast and efficient means of transferring electronic information between the central and remote
sites is required.

Page 40

STARS-VC-B009/001/00 28 February 1994

Individual site connection requirements are dependent upon the amount of data to be transmitted.
Software required for network connection is dependent upon each site’s preexisting computer
and network resources. For example, the combination of data rate, local hardware, and local
software at a given site may call for either leasing a dedicated line or upgrading the network
connection.

Development strategies that reduce the level of network traffic required for user interaction with
a CARDS Library will continue to be examined. Such strategies may include: development of
library interface modules which reside on individual users’ platforms (hence removing network
traffic pertaining to screen display and refresh transmission), or distribution of library-encoded
domain model/components to reside on individual users’ systems.

4.4.1 Wide-Area Networks

WANS, such as Internet, provide an effective access mechanism to allow users to review and
extract components in a timely manner, without direct support by the library personnel. As such,
the WAN connection strategy addressed in detail in the CARDS Library Operations Policies and
Procedures [28] consists of:

* equipment required to connect a site to the network
* time required to connect a site to the network

» network restrictions and limitations

» cost of connecting a site to the network

* local communication requirements

» communication software for the network

Access to a CARDS Reuse Library via Internet adds significant advantages to its usefulness.
Remote access sites that already have Internet access will only need to install the X Window
System and AFS (depending upon distribution mechanism) to access the library. This allows
new sites to be connected for experimental use with minimal overhead and delay. Because AFS
enal ‘=s security to be established in very flexible ways, access can be sufficiently free to allow
any AFS-capable site to use the library, or restrictive enough to prevent access to everyone
except those with specific authorization.

4.4.2 Direct Connection

If a direct connection is chosen, allowing other Internet traffic to be passed across the link
becomes an issue. If other-site Internet traffic is allowed, large, sporadic transfers across the link
could significantly reduce the consistency with which the network responds. With the software

Page 41

STARS-VC-B005/001/00 28 February 1994

architecture chosen, this effect on responsiveness is limited to specific, predictable points during
user access to the archive, which minimizes its seriousness. The direct links from a CARDS

Library are restricted so that other Internet traffic is eliminated.

STARS-VC-B005/001/00 28 February 1994

5 The CARDS Library Security
5.1 Overview

With the popularity and, in some cases, the necessity of open systems and wide area networks
and the corresponding increase in security breaches in such systems, computer security is an issue
that must be addressed. Security incidents range from manual attacks (by both "hackers” and
insiders) to automated attacks (such as worms). Any incident which has the capacity to inhibit
the operation of the library or system can be identified as a security problem, without regard to
the source (authorized or unauthorized personnel) or mechanism (accidental or deliberste).

Computer security is often associated with hackers breaking into systems and viruses disrupting
service, but it encompasses much more than this. Threats may also be categorized as natural
(e.g., earthquake), structural (e.g., flaws in the physical environment), and unintentional human
errors. Any event that has the potential of resulting in disclosure of information, modification
or loss of data, denial of service, or FWA (fraud, waste, and abuse) should be considered a
potential security threat.

Development of a secure system is an evolving and iterative process involving five steps:
1. determine the scope of the security policy
2. development of a security policy
3. preparation of a risk analysis
4. development/update of security plan

5. implementation of countermeasures

Iterations are required due to the ever-changing world of computer hardware and software, and
the corresponding changes that are required of systems that are based on the hardware and
software. As a system (such as the CARDS library) matures, its scope or policies may change,
requiring that the security policy be reviewed and updated accordingly.

5.2 Security Plan

The CARDS library security plan, as outlined in the LOPP [28], and the CARDS Library Security
Analysis [36] address the five steps presented above and their relationship to CARDS Library.
Potential threats to the CARDS library system application software, operating system software,
and library components are presented. The risk associated with each threat is analyzed and
countermeasures suitable to reducing or eliminating the potential are presented. The following
sections present an overview of the concepts involved in security. The information presented here
is a small subset of tl.2 security issues pertaining to the CARDS library support infrastructure.

Page 43

STARS-VC-B009/001/00 28 February 1994

5.3 Scope of CARDS Library Security

Initial analysis and implementation of the CARDS library security encompasses only a
portion of the overall security picture. Those areas of concern are: administrative security,
computer security, file security, and communications security. Only electronic threats (viruses,
unauthorized users, etc.) will be considered. Physical threats, such as fire, will be considered at
a later time. The Security Analysis covers only those components to be stored in the library as
of Phase ITI: nonclassified COTS, GOTS, and public domain software.

Due to legal and financial repercussions, ucensing of COTS must be addressed. The library must
be concerned with, and protect against, proprietary components being taken without the proper
authorization. Additionaily, distribution levels and handling caveats of government materials
must also be considered.

To keep the analysis manageable, the scope was initially limited by making a number of
assumptions, including:

* The focus of the analysis is the CARDS Command Center Library.

» There is a closed security environment (developers and ccafiguration management
controls are trusted, i.e., malicious actions from these sources are not considered).

* Users are either Government or Government contractors.

» Personal contents of accounts and work areas are not covered.
5.4 Security Policy

The first step in developing a secure system is preparation of a security policy, derived from the
library concept of operations. Its purpose is to state what must be protected and from whom it
is being protected. The CARDS libraries current security policy is outlined below:

 limit library access to authorized users

* limit use of the library to that of its intended purpose

* ensure continued service of the reuse library

* ensure the integrity of new library components

« protect the integrity of existing library components

» Qutline the standard procedures for licensing and distribution of COTS

* Qutline the procedures to be implemented to insure the proper distribution of COTS

Page 44

[e—

STARS-VC-B009/001/00 28 February 1994

5.5 Risk Analysis

Risk analysis is a process that addresses risks to a computer system and its components over
the entire life-cycle for that system. Risk is a combination of threats to the system and the
system vulnerabilities. Identification of those threats and vulnerabilities (collecuvely referred to
as threats) is only the first step in the multi-phased process of risk analysis {35]. This four-
step process includes: threat identification, threat evaluation, countermeasure identification, and
threat re-evaluation.

The approach taken in the CARDS libraries risk analysis is a derivatic.. of the methodologies
presented in the Department of the Air Force’s policies on computer security [14] and risk
analysis [35].

5.5.1 Threat Identification

A truly secure system has countermeasures in place for all possible threats, thus emphasizing
the importance of identifying those threats. Encompassing a wide range of technologies, each
with its own abundance of potential security threats, the CARDS Command Center Library
poses special security problems. Attempting to identify the risks to the CARDS library is,
understandably, a formidable task. Viewing the CARDS library not as a system, but a collection
of smaller subsystems each with its own security problems, provides a means of making the task
more manageable while maintaining the integrity of the analysis. The following CARDS library
security areas were identified:

* hardware

* system administration

* run-time software (includes the operating system and other software)
* RLF

* library components

* AFS

» accounts (both user and developer)

5.5.2 Threat Evaluation

Determining threats and countermeasures is not sufficient to insuze that security is properly
handled. Factors such as the likelihood, impact, or outcome of a potential security threat and the
cost of appropriate countermeasures all contribute to the decision of whether or not to counter

Page 45

STARS-VC-B009/001/00 28 February 1994

a potential security threat. Additionally, the security policy is checked for impact and updated
locally as required every time a potential security threat is identified.

The process by which threats are evaluated is discussed in detail in the CARDS Library Security
Analysis [36]. Contained in the sections that follow is an overview and illustration of this
process.

5.5.2.1 The Process - An Overview

To aid in evaluating potential dangers to the system, threats are prioritized by determining a risk
value for each threat. This risk value is a numerical value which may be used to "rank" the threats
according to which are of most concern to the system. Most assessments in determining this risk
factor were done using a qualitative scale and converted to numerical values when necessary. The
rational behind this approach and the associated formulas and mappings is described in the
CARDS Library Security Analysis{36].

The risk factor is determined by rating the risk based on two factors: the likelihood of the threat
occurring (threat likelihood) and the impact of the threat occurring on the system (threat impact).

The threat likelihood is determined by assessing the work involved in introducing the threat to
the system (work factor) and the probability of detecting the attack (probability of detection).
These two areas are rated qualitatively on a scale from “low” to "high". The combination of
these two values produces a threat likelihood value also ranging from "low" to "high". A second
mapping associates this qualitative value with a quantitative value. These, and all subsequent,
mappings of qualitative terms are described in the CARDS Library Security Analysis and are
not duplicated here.

A potential threat can impact a system in many different ways. Six are of concern to the CARDS
library: theft of property or data (theft/loss), removal or destruction of property or data (theft/
destruction), disclosure of sensitive or proprietary information, modification of information or
assets, denial of service to authorized users, and fraud, waste, and abuse (FWA). Impact on all
six areas must be considered when determining the impact on the system. These six categories
are rated on a scale from "none” to "extremely high".

Based on the system under review, the threat impact categories may be of varying importance,
e.8., a system with no sensitive information would not be concerned with either type of disclosure.
The CARDS library security analysis weighted the six areas according to their impact on the
library system. The following formula resulted:

Modification Rating + 0.9 * (Loss/Theft Rating) + 0.6 * (Loss/Destruction Rating) + 0.5 * (FWA
Rating) + 0.1 * (Denial of Service Rating) + 0.1 * (Disclosure Rating)

To utilize this forrula, each impact category rating was converted to a numerical value.

The risk value is determined from the combination of the threat likelihood and threat impact.
Wit.; both the impact and likelihood in numerical form, they are inserted in the following formula
to determine the overall risk value:

Risk Value = (Threat Likelihood value * Threat Impact Value) | 2

Page 46

STARS-VC-B009/001/00 28 February 1994

5.5.2.2 An Mustration

As a reuse library that will house various commercial products, the CARDS library must concern
itself with protecting these licensed and proprietary components. The specific threat of concern
is that of a user (authorized or not) gaining direct access to the library components and stealing
(i.e., copying) a commercially available product. Financial, legal, and even political repercussions
could occur.

After gaining access to the computer system, it would require very little work to access
the components. (This assumes that no countermeasures are in place and that the threat of
unauthorized personnel breaking into the system has happened.) Thus the work factor is "low".

Since nothing is being modified or deleted, detection of this threat is very difficult, resulting in
a "low" rating for the probability of detection.

Using the mapping given in the Security Analysis, “low" ratings for the work factor and
probability of detection result in a "high" threat likelihood, which, in turn, maps to a numerical
value of 10.

Of the six impact areas, this threat only affects the loss/theft category and thus receives a "high"
rating for this impact area; while all others are rated “none”. Converting these to numerical
values (the Security Analysis assigns 10 to "high" and O to "none") results in an impact value
of 9, as shown in the equation below.

0+(09*10)+ (06*0)+(05*0)+(0.1*0)+(01*0)=9

Applying the likelihood value of 10 and impact value of 9 to the risk factor formula results in
a risk value of 45:

(10*9)12=45

Although this risk value does not itself indicate the severity of the risk or urgency of implementing
a countermeasure, comparison to other risk values will put it in its proper perspective.

5.6 Countermeasures

After identifying threats, suitable countermeasures are identified to reduce the likelihood and
impact of an attack. Countermeasures are implemented for each threat whose potential risk
warrants the cost of implementation. The decision to implement a countermeasure depends on
two factors: implementation vs. restoration costs and the effectiveness of the countermeasure.

An important part of identifying and evaluating countermeasures is the implementation cost.
Many factors such as manpower, money, and system downtime must be considered to derive
a true cost evaluation. Whether a countermeasure can be justified for implementation largely
depends on the cost of restoring the system to its state before the attack, if possible. If the
cost of countering a potential risk outweighs the restoration cost, then it may not be viable to
implement the countermeasure. This mentality, though, is only partially justifiable and could
cause problems in the future if the frequency of a threat is not also taken into consideration.
A threat which occurs, or has the potential to occur, frequently may warrant implementing a
countermeasure, without regard to the cost.

Page 47

STARS-VC-B009/001/00 28 February 1994

6 Library Interoperability
6.1 Overview

STARS envisions that:

"reuse in the future will occur in the context of a distributed network of heterogeneous domain-
specific libraries. Each library will likely focus narrowly on one or a small set of vertical or
horizontal domains, since libraries emphasizing relatively narrow domains are more likely 1o yield
high impact reuse through greater depth of focus and better control of variability. However, this
proliferation of domain-specific libraries will promote library heterogeneity, since the libraries
will utilize distinct data models designed specifically to capture the characteristics of the their
respective domains.” [15]

In this distributed, heterogeneous library context, one of the key challenges is the establishment
of mechanisms to allow users at a given library to locate, inspect, and reuse components within
the entire library network, thus maintaining the uniqueness and enhancing the effectiveness of
each library.

A long-term goal of the CARDS library is to provide a consistent method of access to and from
other relevant libraries, enabling reusable components from these libraries to become integral
parts of the overall CARDS library and other yet to be developed libraries. The CARDS library
will be part of an organizational framework that will allow for component utilization across
physical library boundaries. It will strive to adhere to emerging industry standards for library
interoperability as these standards become available and are released [17].

To facilitate library interoperability, the CARDS library in conjunction with Asset Source for
Software Engineering Technology (ASSET) Program and the Defense Information Systems
Agency Software Reuse Program (DISA/SRP) have implemented heterogeneous library inter-
operability services between the three representative reuse library systems [6].

6.2 A Reference Model for Interoperability

In the process of formulating the plans and technical infrastructure for interoperability, business
and technical issues must be addressed. Figure 6-1 depicts a general model for interoperability
based, in part, on experiences drawn from an internal CARDS/ASSET interoperation effort. This
model is generic in nature and can be utilized for formulating detailed plans for interoperability
between various libraries.

Page 48

STARS-VC-B009/001/00 28 February 1994

STEPPINGSTONES TO INTEROPERATION

automated cooperation
perception of homogeneity
robust distribution
seamlessness

¢ service-oriented standards
Inter-action * remote and programmatic execution
* e.g. import/export, notification, query

* data-oriented standards
Inter-change :2'&'5' memm m rodel
inter-connection . '"gamer— l;aveim

* a.g., AFS/TCPFTP

¢ shared business needs
Co-operation * common heritage
* common objectives

inter-operation

Figure 6-1 Interoperation Reference Model

The following discussions apply to Figure 6-1:

* Co-operation: The impact of interoperability on the unique business needs and poli-
cies must be measured against the positive gains of interoperating. Memorandums
of Understanding between libraries stating the common objectives, goals and agree-
ments build the foundation for interoperability.

 Inter-connection: In order to achieve interoperability, an agreement must include the
underlying mechanisms for connecting libraries. Common protocols for data ex-
change build this technical foundation. These common protocols can differ for each
library connection.

» Inter-change: The interconnecting libraries incrementally establish data-oriented
standards supporting data, data models, and meta-models. An understanding of the
other libraries’ unique models can help facilitate interoperability. The creation of
agreed upon data models will facilitate inter-change.

* Inter-action: As library interoperability progresses incrementally through the refer-
ence model, service-oriented standards, remote and programmatic execution, and
notification services can be described and implemented. The import/export, notifica-
tion, query, and other specialization services enhance library interoperability and
begin to eliminate the need for user or librarian intervention.

Page 49

STARS-VC-B009/001/00 28 February 1994

» Inter-operation: The final and optimal level of interoperation occurs with automation
of the previous services, especially the librarian manual and user intervention pro-
cesses,so that libraries are perceived to be homogeneous (seamless interoperability).

6.3 Features and Scenarios

6.3.1 Features

Scenarios for interoperation are a vehicle that can be utilized to understand the impact on internal
library policies and the technical issues confronting each library for the steps in the reference
model. Scenarios can be expressed in terms of combinations of implementation features. Some
illustrative features include:

* Automation (interactive vs. non-interactive) - This describes whether the implemen-
tation is completely automated, or whether manual intervention on the part of a
librarian is required to render the service.

» Actor (surrogate retrieval vs. user-retrieval) - All asset retrieval operations are ser-
vices provided to a library user. Actor defines who performs the operation.

» Asset Protection (public vs. private) - This describes whether access to the retrieved
asset has been restricted in some way.

* Retrieval (direct vs. indirect) - This describes whether an asset is retrieved from the
library directly by the user or indirectly by the remote library.

* Transparency (transparent vs. non-transparent) - This refers to whether the end-user
was made aware that an asset was retrieved from a remote library system.

Combinations of the above features can produce varied and multiple scenarios. Figure 6-2 shows
three such scenarios which were derived from a feature lattice built from the aforementioned
features.

6.3.2 Scenarios

Two major scenarios for interoperation have been identified (one of which is divided into two
related scenarios). This section outlines a high level description of the key protocols of these
two major scenarios. For clarity, in the following descriptions, the term "local library”, or just
"library"”, will refer to the library mechanism with which the user is interacting, while the term
“remote library" will refer to some other library mechanism.

Page 50

7 v

STARS-VC-B009/001/00 28 February 1994

Assat interchange Features

actor transparency asset protection

AN N A

user sumogate transparent non-rans public private automate non-auto

Figure 6-2 Feature Lattice for Asset Interchange

Scenario I implements manual retrieval of assets owned by the remote library system. A surrogate
(the librarian of the user’s local library) performs the retrieval on behalf of the user. The user
is aware that a remote library provided the asset.

Scenarios Ia and IIb provide fully automated asset retrieval. In Scenario Ia, a user retrieves
the abstract or description of an asset from a remote library; the abstracts and descriptions are
available to any user. In Scenario IIb, a user retrieves an asset from the remote library; before
any retrieval is done, the user must be authenticated by the local library as having a distribution
class high enough to receive the desired asset. In each case, a surrogate (an automated process
running on the local library’s host machine) performs the retrieval on behalf of the user. The
user is not necessarily aware that a remote library provided the abstract/description or asset.

The concept of a "surrogate” appears in many of the scenarios. A surrogate is an entity (either
a human being or a computer program) which does work on behalf of a user. Each library uses
a surrogate process to extract components on behalf of a user. The surrogate process is located
either on the local or remote library system. When invoked, it will connect to the remote library
and retrieve files from the remote library to the local library. Depending on the scenario, it may
validate the user’s security privileges before connecting to the remote library.

6.3.2.1 Scenario I: Librarian assisted retrieval of asset

The basis of this scenario (Figure 6-3) is asset retrieval with a human library administrator
“in the loop." This is a baseline capability that may be required under all "full” interoperation
arrangements in order to handle media that is not available in electronic form or problems that
occur with the interoperability system and therefore require manual intervention.

The idea is that a user requests an asset which resides in the remote library, and the local librarian
is responsible for delivering the asset to the user as well as notifying the remote library of the

Page 51

STARS-VC-B009/00100 28 February 1954

retrieval. (Note that, depending on the user interface of the local library, the user may not be
aware that the asset resides at a different library). Scenario I is the same as Scenario IIb (see
below), but with a human surrogate rather than a software surrogate. The notification of the
remote library system allows the remote library to track usage of its library, gather metrics, and
initiate follow-on contact if desired. Also, the notification to the remote library at step 3 (see
Figure 6-3) allows the remote library to "close the books" on the request at step 8, or else fulfill
the user request directly.

Local Library System Cooperating Library System
| wm= | Remote
{ ® —— | Index
1 y
Local Library Remote Library
User *~
» —
‘ Client ® Server
. |
)
g : % ? : | cormmmn
i Local © Remote Remote
Librarian Librarian Asset Store

Local library is provided access to remotae library® index.

User requests an asset that is recognized by the local system as remote.

= | ocal and remote libranians are noti ed of user request, and user is noti’ed.
Local librarian manually validates user access privileges.

@ Hf denied access, user and remote librarian noti’ed. Scenario ends!
Asset retrieved by local libranian.

® Asset delivered to user.

®© Remote librarian and user noti'ed of delivery.

Figure 6-3 Scenario I: Library Assisted Asset Retrieval

6.3.2.2 Scenario IIa: Automated retrieval of description or abstract

The basis of this scenario (depicted in Figure 6-4) is the retrieval of asset descriptions or abstracts
without human intervention. It is a first step towards seamless interoperation.

The idea is that asset descriptions and abstracts can be made available with little or no concern
for access control, tracking, etc. (The local library should still notify the remote library of
retrievals to allow for racking and metrics).

Page 52

STARS-VC-B009/001/00 28 February 1994

In this scenario, the retrieval is done automatically and transparently. However, what is retrieved
is an abstract or description of the asset rather than the reusable asset itself. A surrogate process,
authorized by the remote library, is used to retrieve the asset on behalf of the user. An abstract is
analogous to a yellow-page entry in the phone book, while a description is more akin to product
literature, glossies, etc.

Local Library System Cooperating Library System
=== | Remote
® — | Index
*| Local Library Remote Library

Client g ® Server ‘E@
L)

Local Remote Remote
Librarian Librarian Asset Store

Local library is provided access to remote library® Index.
& User requests an asset that is recognized by the local system as remote. Remote
librarian noti' ed of request.
= L ocal library® surrogate automatically accesses abstract/description for desired
asset.
Asset information is automatically delivered to user.
© Remote librarian noti'ed of abstract or description delivery.

Figure 6-4 Scenario Ila: Automated Abstract Retrieval

6.3.2.3 Scenario IIb: Automated retrieval of asset
As with Scenario ITa, the basis of this scenario is asset retrieval without human intervention.

The idea is to provide automatic retrieval of assets (as opposed to their descriptions or abstracts)
from a remote library. Since assets have associated security and distribution requirements, the
local library must authenticate that the user has the appropriate privileges necessary to access
the asset. A surrogate process, authorized by the remote library, is used to retrieve the asset on
behalf of the user. Except for the authentication step, this scenario is very similar to Scenario
Ia.

Page 53

STARS-VC-B009/001/00 28 February 1994

6.4 CARDS/ASSET/DSRS Interoperability

CARDS, ASSET, and DSRS have developed a trilateral memorandum of understanding (the
basic agreement between the libraries), a trilateral interoperability plan (6] based on the three
scenarios described here, a trilateral security document [7] discussing security concerns (based on
the TCSEC [20] and DoD "rainbow series" of security books), and a trilateral metrics document
[5] describing the collection of usage metrics by each library. Interoperability between the
three libraries reached the Initial Operational Capability (IOC) stage in October 1993, as each
introduced full trilateral interoperation into its library systems.

Local Library System Cooperating Library System
| ——| Remote
E ® —_ | Index
|
Local Library Remote Library
®
Client ® -

Remote Remote
Librarian Librarian Asset Store

Local library is provided access to remote library® Index.
#H User requests an asset that is recognized by the local system as remote. Remote
librarian noti'ed of request.
#* | ocal library automatically validates user® distribution rights.
If denied access, user, and local and remote librarians noti ed. Scenario ends!
O Asset automatically retrieved by local library® surrogate; OR
Asset automatically delivered to user by local library.
® Remote librarian and user noti’ed of delivery.

Figure 6-5 Scenario ITb: Automated Asset Retrieval

The interoperability framework between the CARDS library, ASSET and DSRS is based on the
Internet as a common interconnect mechanism, and index files to describe all. Additionally, the
CARDS implementation uses AFS. A client/server based on TCP is used as the file transport
mechanism between libraries (with further file transport within the CARDS library implementa-

Page 54

STARS-VC-B005/001/00

28 February 1994

by the TCP server.

tion using the AFS file system). Notification of the remote libraries is performed automatically

Page 55

STARS-VC-B009/001/00

28 February 1994

AdaKNET

AdaTAU

AFS

ALOAF

acquisition

adaptation

application

application domain

architectural constraints

architecture-level integration

architecture model

APPENDIX A - Giossary

A semantic network modeling subsystem written in Ada.
It provides the heart of the Reuse Library Framework’s
library model.

A rule-based inferencing subsystem written in Ada. It
supports the AdaKNET semantic network in the Reuse
Library Framework'’s library model.

Transarc’s wide-area network distributed file system,
which once stood for the Andrew File System, a GOTS
product from the Andrew Project at Carnegie-Mellon
University.

The conceptual structure that supports seamless inter-
change and interoperability among networked, distributed
heterogeneous component libraries by defining a service
model; protocols supporting that model; Ada package
specifications for the protocols; and a component ex-
change common data model, semantics, and formats.

The phase of library population in which potential soft-
ware products are identified, screened and then evaluated
for inclusion in the library.

The phase of library population in which existing soft-
ware products are modified or enhancements (i.e., wrap-
pers) are designed, implemented, and tested as new soft-
ware products.

A system which provides a set of general services for
solving some type of user problem.

The knowledge and concepts which pertain to a particular
computer application.

A formalism of the relationships between architectural
subsystems and any limitations that may be placed upon
them.

Combining architecture level components to create a
system architecture or domain architecture.

A model that represents the interrelationships between
system elements and sets a foundation for later require-
ments analysis and design steps.

Page A-1

STARS-VC-B009/001/00

28 February 1994

architecture modeling

attribute

authentication

browse

classification

command center

commercial off-the-shelf (COTS)

common criteria

component

component acquisition

component qualification

concept

context

data model

The process of creating the software architecture(s) that
implements a solution to the problems in the domain.

A characteristic of an object or relationship. Each
attribute has a name and a value.

The process of establishing that someone or something is
who they say they are.

Surveying the reusable component descriptions in a
library to determine whether the component is applicable
to the current application.

A mapping of a collection of objects to a taxonomy; the
process of determining such a mapping.

A facility from which a commander and his/her repre-
sentatives direct operations and control forces. It is or-
ganized to gather, process, analyze, display and dissemi-
nate planning and operational data and to perform other
related tasks.

Commercially available software.

Attributes used to evaluate a component regardless of the
domain. See component certification.

A set of reusable resources that are related by virtue of
being the inputs to various stages of the software life
cycle, including requirements, design, code, test cases,
documentation, etc. Components are the fundamental
elements in a reusable software library.

The process of obtaining components appropriate for
reuse to be included in a library.

The process of determining that a potential component is
appropriate to the library and meets all quality require-
ments. Evaluation takes places against domain criteria.

An atomic part of the AdaKNET knowledge representa-
tion scheme, representing an idea or thing.

The circumstances, situation, or environment in which a
particular system exists.

A logical representation of a collection of data elements
and the association among those data elements.

Page A-2

STARS-VC-B009/001/00

28 February 1994

direct extraction

domain

domain analysis

domain architecture

domain constraints

domain criteria

domain engineering

domain expert

domain-level integration

domain model

A method of component retrieval in which the component
is retrieved directly from a library.

An area of activity or knowledge containing applications
which share a set of common capabilities and data.

The process of identifying, collecting, organizing, analyz-
ing, and representing the relevant information in a domain
based on the study of existing systems and their develop-
ment histories, knowledge captured from domain experts,
underlying theory, and emerging technology within the
domain.

High-level paradigms and constraints characterizing the
commonality and variances of the interactions and rela-
tionships between applications within a domain.

Represent the mission-level requirements identified
within the boundaries of the domain. They determine
the functionality of the system expressed in terms and
language dominant within the domain.

Specifications a potential component must adhere to in
order to obtain acceptability in the domain and inclusion
in the library. Domain criteria are a composite of three
sets of constraints: component constraints, architectural
constrains, and implementation constraints.

An encompassing process which includes domain analy-
sis and the subsequent construction of components, meth-
ods, tools, and supporting documentation that address the
problems of system/subsystem development through the
application of the knowledge in the domain model and
software architecture.

An individual with extensive knowledge of a particular
domain.

The process of using and evolving domain and applica-
tion components in the creation of requirements, archi-
tectures and implementations (domain and application).

A definition cf the functions, objects, data, and relation-
ships in a domain, consisting of a concise representation
of the commonalities and differences of the probi:ms of
the domain and their solutions.

Page A-3

STARS-VC-B009/001/00

28 Februarv 1994

domain modeling

domain-specific library

domain-specific reuse

doraain-specific software
architecture

ERA model

encode

generic architecturs

generic command center architecture

government off-the-shelf (GOTS)

graphical browser

horizontal domain

implementation-level integration

implementation constraints

indirect extraction

The process of encoding knowledge about a domain into
a formalism.

A library whose components are bound by a specific
domain.

Reusc that is targeted for a specific domain (as opposed
to reuse of general purpose workproducts). It typically
involves reuse of larger workproducts (subsystems, ar-
chitectures, etc.) that general purpose reuse.

An -hitecture (interactions and relationships between
objecws) used to develop software applications based on
a specific domain.

Models data objects and their relationships using a
graphical notation.

See library encoding.

A collection of high-level paradigms and constraints that
characterize the commonality and variances of the inter-
actions and reiationships between the various components
in a system.

The fundamental gencric architecture that underlies com-
mand center applications.

Software developed for and owned by the government.

A graphical presentation of the domain model and in-
terrelations between components. Through the graphical
browser, components may be browsed, v ~—~d, and ex-
tracted. It also provides an inferencing mechamism to aid
in prototyping and selecting the correct components.

The knowledge and concepts that pertain to a particular
functionality of a set of software components that can be
utilized across more than one application domain.

Combining components in order to implement a system.

Provide the hardware and software requirements to which
the individual software modules must adhere.

A component retrieval method in which a component is
retrieved from a remote library with interactive extrac-
tion. This can occur transparently or non- transparently.

Page A4

STARS-VC-B009/001/00 28 February 1994

infrastructure The basic underlying framework or features.

integration The process (in library population) of verifying that
a software product meets the architectural constraints
imposed by the generic aichitecture.

interoperability The ability of two or more systems to exchange infor-

knowledge blueprint
knowledge representation

library

library applicaticns
library encoding

library model

library population

life-cycle

life-cycle artifact

memorandum of understanding

model

modeling
prototyping

mation and to mutually use the information that has been
exchanged.

A flexible plan to transition knowledge to the community.
Codification of domain knowledge.

A collection of components that are cataloged according
to a common classification scheme and a set of applica-
tions that provide a mechanism to browse and retrieve
components.

Services provided to the library user.

The process of encoding the products of the domain
analysis into a library model.

A model that represents the domain components and the
relationships between them.

The process of acquiring/developing components in sup-
port of the library model.

All the activities (e.g., design, code, test) a component is
subjected to from its inception until it is no longer useful.
A life cycle may be modeled in terms of phases, which
are often characterizations of activities by their purpose
or function such as design, code, or test.

A product of the software engineering process (i.e., a
component).

An agreement stating terms of cooperation between two
entities.

A representation of a real-world process, device, or
concept.

The process of creating a model.

The practice of building a first or original model (some-
time scaled down, but accurate) of a system to verify the
operational process prior to building a final system.

Page A-5

——

range (role)

rapid prototyping

relationships

repository

retrieval

reusable component

reuse

reuse library

reuser

rule base

SADT

STARS-VC-B009/001/00 28 February 1994

RIG An industry/government group working to form a con-
sensus of basic services for interoperability.

RLF Provides a framework for building domain-specific li-

braries.

The number of simultaneous copies that may exist of an
AdaKNET aggregation relationship.

The process of using a library mechanism to quickly
prototype a system.

The connections between entities, objects, or compo-
nents.

The mechanism for defining, storing, and managing all
information, concerning an enterprise and its software
systems - logical data and process models, physical def-
initions and code, and organization models and business
rules.

The process of obtaining a component from a library such
that it may be used in the development process.

A component (including requirements, designs, code,
test data, specifications, documentation, expertise, etc.)
designed and implemented for the specific purpose of
being reused.

The application of existing solutions to the problems of
system development. Reuse involves transfer of expertise
encoded in software-related work products. The simplest
form of reuse from software work products is the use of
subroutine/subprogram libraries for string manipulations
or mathematical calculations.

A library specifically designed, built, and maintained to
house reusable components.

One who implements a system through the reuse process.

A collection of rules about the elements of a domain. A
rule describes when and how the facts about the model
may change.

A system analysis and design technique used for system
definition, software requirements analysis, and system
software design.

Page A-6

STARS-VC-B009/001/00

28 February 1994

security policy

semantic network

software architecture

specialization

surrogate retrieval

system architecture

system composition

system engineering

taxonomy

vertical domain

The set of laws, rules, and practices that regulate how an
organization manages, protects, and distributes sensitive
information.

A graphical knowledge representation method composed
of nodes linked to each other.

High-level paradigms and constraints characterizing the
structure of operations and objects, their interfaces, and
control to support the implementation of applications in a
domain. Includes the description of each software com-
ponent’s functionality, name, parameters and their types
and a description of the component’s interrelationships.

The act of declaring that one concept represents a
narrowing of the idea represented by another concept.

A user’s library retrieves a component from a remote
library for the user.

A model that represents the interrelationship between sys-
tem elements and sets a foundation for later requirements
analysis and design steps.

The automatic configuration of a prototype system based
on hardware and software requirements.

A process encompassing requirements gathering at the
system level with a small amount of top-level design and
analysis.

The theory, principles, and process of categorizing enti-
ties in established categories.

The knowledge and concepts that pertain to a particular
application domain.

Page A-7

STARS-VC-B009/001/00 28 February 1994

APPENDIX B - Acronyms

ADL Architecture Description Language

ALOAF Asset Library Open Architecture Framework
ASSET Asset Source for Software Engineering Technology
C2 Command Center

CARDS Central Archive for Reusable Defense Software
CCDH Command Center Design Handbook

CCL Command Center Library

CLIPS C Language Integrated Production System
COTS Commercial Off-The-Shelf

DISA Defense Information Systems Agency

DSRS Defense Software Repository System

ERA Entity-Relationship-Attribute

FTP File Transfer Protocol

GCC Generic Command Center

GOTS Government Off-The-Shelf

LAN Local-Area Network

LOPP Library Operation Policies and Procedures
NFS Sun Microsystem’s Network File System
PRISM Portable Reusable Integrated Software Modules
RCP Remote Copy

RLF Reuse Library Framework

SADT Structured Analysis and Design Techniques
SMTP Simple Mail Transfer Protocol

STARS Software Technology for Adaptable, Reliable Software
TCSEC Trusted Computer System Evaluation Criteria
WAN Wide-Area Network

Page B-1

STARS-VC-B009/001/00 28 February 1994

APPENDIX C - References

[1] AdaKNET User’s Manual. Informal Technical Report
for STARS. Paramax, 1991.

[2) AdaTAU User’s Manual. Informal Technical Report for
STARS. Paramax, 1991.

[3] AFS System Administrator’s Guide. Transarc Corp.,
Pittsburgh, PA, 1991.

[4] Arango, Guillermo F. Domain Engineering for Software
Reuse. Ph.D. Thesis, University of California at Irvine,
1988.

[5] ASSET/CARDS/DSRS Interoperability Metrics Collec-

tion, CARDS Informal Technical Report, Unisys Corpo-
ration, October 1993.

6} ASSET/CARDS/DSRS Interoperability Plan. CARDS
Informal Technical Report. Paramax Systems Corpora-
tion, February 1993.

7N ASSET/CARDS/DSRS Software Reuse Libraries Inter-
operability Security Document, CARDS Informal Tech-
nical Report, Unisys Corporation, October 1993,

(8] Balzer, R., "Design Refinement in DSSAs”, Proceedings
of the JSGCC Software Initiative Strategy Workshop,
Dec 1992, Vail CO.

9 Brachman R. A Structural Paradigm For Representing
Knowledge. Bolt Beranek and Newman, Inc., 1978.

(10] CARDS Franchise Plan. STARS-VC-B010/001/00.
Unisys Corporation, 28 February 1994.

[11] Cohen, Sholum. Software Reuse Technology: Feature-
Oriented Domain Analysis. SEI Tutorial Slides, 1992,

[12) Command Center Design Handbook. Defense Informa-
tion Systems Agency, September 1991.

[13] Command Center Supported Component Report.
CARDS Informal Technical Report, STARS-VC-B013/
000/00, Unisys Corporation, 22 February 1994,

[14] Computer Security Policy. Department of the Air Force
Report AFR 205-16, April 1989.

Page C-1

STARS-VC-B009/001/00

28 February 1994

[15]

[16]

(17]

[18]

[19]

(20}

[21]

[22]

(23]

[24]

[25]

[26]

Conceptual Framework for Reuse Process Version 1.0.
STARS Reuse Concept Volume 1, STARS-TC-04040/
001/00. IBM, Paramax, Boeing, 1992.

Concept of Operation for the CARDS Command Center
Library, To be released as a CARDS Informal Technical
Report. Unisys Corporation, March 1994,

Department of Defense Software Reuse Initiative (SRI),
Virtual Library Operational Concept Document, Version
5.1, 6/23/93.

D’Ippolito, Richard S. "Using Models in Software En-
gineering," Proceedings of TRI-Ada’89, 1989, 256-265
ACM, New York, NY.

Devonbu P., R.J. Brachman, P.G. Selfridge, and B.W.
Ballaard. "LaSSIE: A Knowledge- Based Software In-
formation System," Proceedings of the 12th International
Conference on Software Engineering, 1990, 249-261.

DoD 5200.28-STD, Trusted Computer System Evaluation
Criteria, December 1985.

Domain Model Document for the Central Archive for
Reusable Defense Software. CARDS Informal Technical
Report STARS-AC-04110/001/00. Paramax Systems
Corporation, November 1992.

Goguen, Joseph A. "Reusing and Interconnecting Soft-
ware Components,” IEEE Computer, Volume 19, Num-
ber 2 (1986), 16-28.

Hayhurst, Brett and Brian Curfman. A Process for
Component Qualification in Domain- Specific Reuse
Libraries. Paramax Systems Corporation, February 1993.

Issues Facing Software Reuse. GAO/IMTEC-93-16.
United States General Accounting Office, Washington,
D.C. January 1993.

Kogut, Paul. The CARDS Qualification Tool - An
Intelligent Assistant for Generating Reusable Component
Consumer Keports. Paramax Systems Corporation, 1993.

Krueger, Charles. "Software Reuse,” ACM Computing
Surveys, Vol 24, Number 2 (June 1992).

Page C-2

STARS-VC-B009/001/00

28 February 1994

(27]

[28]

[29]

{301

(31}

(32]

{33]

[34]

[35])

[36]

[37]

[38]

Library Development Handbook. ¥ CARDS Informal
Technical Report STARS-AC-B005/002/ 00. Unisys
Corporation, October 1993,

Library Operation Policies and Procedures for the Central
Archive for Reusable Defense Software: Volumes I & IT1.
CARDS Informal Technical Report STARS-AC-04109/
001/00. Paramax Systems Corporation, December 1992.

Neighbors, James M. "DRACO: A Method for Engineer-
ing Reusable Software Systems,” Software Reusability,
ACM Press, Volume 1, 1989, 295-320.

Perry, Dewayne E., and Alexander L. Wolf. "Founda-
tions for the Study of Software Architecture”, Software
Engineering Notes, ACM Press, Vol. 17, Number 4 (Oc-
tober 1992).

Pietro-Diaz, Reuben. Reuse Library Process Model.
STARS, IBM, 1991.

Prieto-Diaz, Ruben. "Domain Analysis For Reusability,
"Proceedings of COMPSAC 87, October, 1987, 23-29.

Prieto-Diaz, Reuben and Peter Freeman. "Classifying
Software for Reusability," IEEE Software, January 1987,
6-16.

Poore, J.H. and Theresa Pepin. "Criteria and Implementa-
tion Procedures for Evaluation of Reusable Software En-
gineering Assets,” ASSET The National Software Tech-
nology Repository, March 1992.

Risk Analysis Guide. Department of the Air Force Report
AFSSM 5018, November 1991.

Security Analysis for the Central Archive for Reusable
Defense Software. CARDS Informal Technical Report.
Paramax Systems Corporation, 1992.

Software Architectures Seminar Report. CARDS In-
formal Technical Report. STARS-VC- B008/001/00.
Unisys Corporation, 1994.

Software Repository Report for the PRISM Program,
ESD, Hanscom AFB, 1992.

Page C-3

STARS-VC-B009/001/00

28 February 1994

(39

{40]

[41]

(42]

[43]

Technical Concept Document, Central Archive for
Reusable Defense Software (CARDS), STARS-VC-
03536/001/00, 27 February 1994.

Tracz, Will. "A conceptual model for megaprogram-
ming,"Software Engineering Notes, ACM Press, Vv ol. 16,
Number 3 (July 1991).

Tracz, Will, "LILEANNA: A Parameterized Program-
ming Language”, Proceedings of Second Annual Work-
shop on Software Reuse, March 1993,

Wallnau, Kurt C. CARDS Libraries and a Standard DoD
Component Classification Scheme. Paramax Systems
Corporation, February 1993.

Wallnau, Kurt C., James J. Solderitsch, Mark A. Simos,
Raymond C. McDowell, Keith A. Cassell, and David
J. Campbell Construction of Knowledge-Based Compo-
nents and Applications in Ada. Unisys - Paoli Research
Center.

Page C4

